Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Large-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors.

Methods: A total of 750 Anopheles gambiae (Keele strain) mosquitoes were fed Plasmodium falciparum NF54 gametocytes through standard membrane feeding assay (SMFA) and afterwards maintained in insectary conditions to allow for oocyst (8 days) and sporozoite development (14 days). Thereupon, each mosquito was scanned using near infra-red spectroscopy (NIRS) and processed by quantitative polymerase chain reaction (qPCR) to determine the presence of infection and infection load. The spectra collected were randomly assigned to either a training dataset, used to develop calibrations for predicting oocyst- or sporozoite-infection through partial least square regressions (PLS); or to a test dataset, used for validating the calibration's prediction accuracy.

Results: NIRS detected oocyst- and sporozoite-stage P. falciparum infections with 88% and 95% accuracy, respectively. This study demonstrates proof-of-concept that NIRS is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors.

Conclusions: Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423776PMC
http://dx.doi.org/10.1186/s12936-019-2719-9DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
anopheles gambiae
8
mosquito populations
8
human malaria
8
detection plasmodium
4
falciparum infected
4
infected anopheles
4
gambiae near-infrared
4
near-infrared spectroscopy
4
spectroscopy background
4

Similar Publications

Structure-Activity Relationships of 3-Hydroxypropanamidines (HPAs) with Potent In Vivo Antimalarial Activity.

J Med Chem

September 2025

Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.

View Article and Find Full Text PDF

Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC  = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).

View Article and Find Full Text PDF

The emergence of multidrug resistance in Plasmodium falciparum poses a serious threat to antimalarial treatment, particularly with growing resistance to artemisinin-based combination therapies (ACTs) and partner drugs like piperaquine. Mutations in key proteins, such as PfCRT (P. falciparum chloroquine resistance transporter) and PfDHFR (P.

View Article and Find Full Text PDF

Can malaria rapid diagnostic tests be used to detect simian malaria?

Acta Trop

September 2025

Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health

Background: The increasing recognition of zoonotic malaria, particularly from Plasmodium species infecting non-human primates (NHP), poses significant diagnostic challenges. Performance of human malaria Rapid Diagnostic Tests (RDTs) has not been evaluated in simian malaria.

Methods: A total of 131 blood samples from NHP hosts with confirmed malaria were analyzed using 14 different commercially available RDTs, detecting the antigens P.

View Article and Find Full Text PDF

Residual Malaria Transmission in Western Burkina Faso: Vector Behavior, Insecticide Resistance, and the Efficacy Limits of Next-Generation LLINs.

Acta Trop

September 2025

Université Nazi BONI (UNB), Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Bobo-Dioulasso, Burkina Faso; Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso; Institut National Santé Publique, Centre MURAZ, Bobo-Di

An entomological surveillance was carried out in two districts of western Burkina Faso to assess the impact of mass-distributed next-generation long-lasting insecticidal nets (LLINs) (Piperonyl Butoxide (PBO) LLINs and Interceptor® G2) on Anopheles gambiae s.l. populations, focusing on insecticide resistance trends and residual malaria transmission patterns, along with their environmental and operational determinants.

View Article and Find Full Text PDF