Registration-based image enhancement improves multi-atlas segmentation of the thalamic nuclei and hippocampal subfields.

Magn Reson Imaging

Computer Science, Vanderbilt University, Nashville, TN, United States of America; Electrical Engineering, Vanderbilt University, Nashville, TN, United States of America; Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America; Psychiatry and Behavioral Sciences, Vander

Published: June 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic resonance imaging (MRI) is an important tool for analysis of deep brain grey matter structures. However, analysis of these structures is limited due to low intensity contrast typically found in whole brain imaging protocols. Herein, we propose a big data registration-enhancement (BDRE) technique to augment the contrast of deep brain structures using an efficient large-scale non-rigid registration strategy. Direct validation is problematic given a lack of ground truth data. Rather, we validate the usefulness and impact of BDRE for multi-atlas (MA) segmentation on two sets of structures of clinical interest: the thalamic nuclei and hippocampal subfields. The experimental design compares algorithms using T1-weighted 3 T MRI for both structures (and additional 7 T MRI for the thalamic nuclei) with an algorithm using BDRE. As baseline comparisons, a recent denoising (DN) technique and a super-resolution (SR) method are used to preprocess the original 3 T MRI. The performance of each MA segmentation is evaluated by the Dice similarity coefficient (DSC). BDRE significantly improves mean segmentation accuracy over all methods tested for both thalamic nuclei (3 T imaging: 9.1%; 7 T imaging: 15.6%; DN: 6.9%; SR: 16.2%) and hippocampal subfields (3 T T1 only: 8.7%; DN: 8.4%; SR: 8.6%). We also present DSC performance for each thalamic nucleus and hippocampal subfield and show that BDRE can help MA segmentation for individual thalamic nuclei and hippocampal subfields. This work will enable large-scale analysis of clinically relevant deep brain structures from commonly acquired T1 images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6747695PMC
http://dx.doi.org/10.1016/j.mri.2019.03.014DOI Listing

Publication Analysis

Top Keywords

thalamic nuclei
20
hippocampal subfields
16
nuclei hippocampal
12
deep brain
12
multi-atlas segmentation
8
brain structures
8
3 t mri
8
thalamic
6
structures
6
segmentation
5

Similar Publications

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF

Clinical Vignette: RNA polymerase III subunit A (POLR3A) related disorders are a group of heterogeneous diseases with a recessive autosomic inheritance. These disorders manifest with distinct clinical features like ataxia, spasticity, hypodontia, hypogonadism, mental retardation and progressive motor decline.

Clinical Dilemma: POLR3A gene mutation can manifest with parkinsonism, dystonia, ataxia and tremor.

View Article and Find Full Text PDF

We introduce an advanced transcranial ultrasound stimulation (TUS) system for precise deep brain neuromodulation, featuring a 256-element helmet-shaped transducer array (555 kHz), stereotactic positioning, individualised planning, and real-time fMRI monitoring. Experiments demonstrated selective modulation of the lateral geniculate nucleus (LGN) and connected visual cortex regions. Participants showed significantly increased visual cortex activity during concurrent TUS and visual stimulation, with high cross-individual reproducibility.

View Article and Find Full Text PDF

Special Considerations for Personalization in Pediatric Intracranial Neuromodulation.

J Clin Neurophysiol

July 2025

Department of Pediatrics, Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, Dallas, Texas, U.S.A.

Open label use of therapies with adult indications raises unique challenges in pediatric DRE. The following review details the landscape of pediatric intracranial neuromodulation. Initially, I discuss available evidence in pediatric neuromodulation while detailing the only randomized clinical trial in a pediatric developmental and epileptic encephalopathy.

View Article and Find Full Text PDF