A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Importance of details in food descriptions in estimating population nutrient intake distributions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: National food consumption surveys are important policy instruments that could monitor food consumption of a certain population. To be used for multiple purposes, this type of survey usually collects comprehensive food information using dietary assessment methods like 24-h dietary recalls (24HRs). However, the collection and handling of such detailed information require tremendous efforts. We aimed to improve the efficiency of data collection and handling in 24HRs, by identifying less important characteristics of food descriptions (facets) and assessing the impact of disregarding them on energy and nutrient intake distributions.

Methods: In the Dutch National Food Consumption Survey 2007-2010, food consumption data were collected through interviewer-administered 24HRs using GloboDiet software in 3819 persons. Interviewers asked participants about the characteristics of each food item according to applicable facets. Food consumption data were subsequently linked to the food composition database. The importance of facets for predicting energy and each of the 33 nutrients was estimated using the random forest algorithm. Then a simulation study was performed to determine the influence of deleting less important facets on population nutrient intake distributions.

Results: We identified 35% facets as unimportant and deleted them from the total food consumption database. The majority (79.4%) of the percent difference between percentile estimates of the population nutrient intake distributions before and after facet deletion ranged from 0 to 1%, while 20% cases ranged from 1 to 5% and 0.6% cases more than 10%.

Conclusion: We concluded that our procedure was successful in identifying less important food descriptions in estimating population nutrient intake distributions. The reduction in food descriptions has the potential to reduce the time needed for conducting interviews and data handling while maintaining the data quality of the survey.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419831PMC
http://dx.doi.org/10.1186/s12937-019-0443-5DOI Listing

Publication Analysis

Top Keywords

food consumption
24
nutrient intake
20
food descriptions
16
population nutrient
16
intake distributions
12
food
12
descriptions estimating
8
estimating population
8
national food
8
collection handling
8

Similar Publications