A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism.

Objective: This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues.

Methods: The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses.

Results: Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism.

Conclusions: Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420416PMC
http://dx.doi.org/10.1007/s11306-019-1503-8DOI Listing

Publication Analysis

Top Keywords

metabolite quantitative
8
quantitative trait
8
trait loci
8
mqtl tomato
8
regions involved
8
involved regulation
8
regulation leaf
8
association leaf
8
leaf metabolites
8
carbon nitrogen
8

Similar Publications