Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The genetically engineered M13 bacteriophage (M13 phage), developed via directed evolutionary screening process, can improve the sensitivity of sensors because of its selective binding to a target material. Herein, we propose a screening method to develop a selective and sensitive bioreporter for toxic material based on genetically engineered M13 phage. The paraquat (PQ)-binding M13 phage, developed by directed evolution, was used. The binding affinities of the PQ-binding M13 phage to PQ and similar molecules were analyzed using isothermal titration calorimetry (ITC). Based on the isotherms measured by ITC, binding affinities were calculated using the one-site binding model. The binding affinity was 5.161 × 10 for PQ, and 3.043 × 10 for diquat (DQ). The isotherm and raw ITC data show that the PQ-binding M13 phage does not selectively bind to difenzoquat (DIF). The phage biofilter experiment confirmed the ability of PQ-binding M13 bacteriophage to bind PQ. The surface-enhanced Raman scattering (SERS) platform based on the bioreporter, PQ-binding M13 phage, exhibited 3.7 times the signal intensity as compared with the wild-type-M13-phage-coated platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466209PMC
http://dx.doi.org/10.3390/v11030248DOI Listing

Publication Analysis

Top Keywords

m13 phage
24
pq-binding m13
20
genetically engineered
12
phage
8
m13
8
engineered m13
8
m13 bacteriophage
8
phage developed
8
developed directed
8
binding affinities
8

Similar Publications

Clustering DNA and RNA molecular dynamics ensembles via secondary structure.

Biophys J

September 2025

Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA. Electronic address:

Macromolecular structure is central to biology. Yet, not all biomolecules have a well-defined fold. Intrinsically disordered regions are ubiquitous, conveying a versatility to function even in otherwise folded structures.

View Article and Find Full Text PDF

Naturally conductive protein nanowires have inspired efforts to engineer electrical conductivity into synthetic fibrous proteins for the development of bioelectronic materials and devices. A comprehensive analysis of charge transport in these systems requires a combination of various measurement methods, instruments and electrode designs. Measurements under direct current (DC) typically focus on charge transport without distinguishing between charged species, requiring alternating current (AC) and electrochemical methods to probe additional phenomena.

View Article and Find Full Text PDF

chronic lung infections pose serious challenges for phage therapy due to high between-patient strain diversity and rapid within-patient phenotypic and genetic diversification, necessitating simple predictors of efficacy to streamline phage cocktail design. We quantified bacteria-phage infection networks (BPINs) for six phages against 900 clones previously isolated from 10 bronchiectasis infections ( = 90 isolates per patient). BPIN structure varied extensively between patients.

View Article and Find Full Text PDF

Background: Checkpoint inhibitors revolutionized cancer treatment by potentiating antitumor immune responses. However, many patients do not respond to these therapies, often due to the lack of a pre-existing immune response against cancer cells. Developing immunotherapies that promote cancer-cell antigen recognition, and the initiation of antitumor immune responses could thus improve response rates.

View Article and Find Full Text PDF

Recent progress of gas sensors toward olfactory display development.

Nano Converg

August 2025

Humanoid Olfactory Display Innovation Research Center, Pusan National University, Busan, 46241, Republic of Korea.

Unlabelled: Olfactory display systems, designed to replicate the human sense of smell, rely on gas sensors that are fast, selective, and reliable. From this perspective, this review highlights recent progress in sensing materials and integration strategies that enable room-temperature operation, rapid response and recovery, and closed-loop control for realistic odor delivery. Advances are classified into three categories: organic, inorganic, and hybrid systems.

View Article and Find Full Text PDF