A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Time-resolved and steady-state irradiation of hydrophilic sulfonated bis-triazinyl-(bi)pyridines - modelling radiolytic degradation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient separation of the actinides from the lanthanides is a critical challenge in the development of a more sophisticated spent nuclear fuel recycling process. Based upon the slight differences in f-orbital distribution, a new class of soft nitrogen-donor ligands, the sulfonated bis-triazinyl-(bi)pyridines, has been identified and shown to be successful for this separation under anticipated, large-scale treatment conditions. The radiation robustness of these ligands is key to their implementation; however, current stability studies have yielded conflicting results. Here we report on the radiolytic degradation of the sulfonated 2,6-bis(1,2,4-triazin-3-yl)pyridine (BTP(S)) and 6,6'-bis(1,2,4-triazin-3-yl)-2,2'-bipyridine (BTBP(S)) in aerated, aqueous solutions using a combination of time-resolved pulsed electron techniques to ascertain their reaction kinetics with key aqueous radiolysis products (eaq-, H˙, ˙OH, and ˙NO3), and steady state gamma radiolysis in conjunction with liquid chromatography for identification and quantification of both ligands as a function of absorbed dose. These data were used to construct a predictive deterministic model to provide critical insight into the fundamental radiolysis mechanisms responsible for the ligands' radiolytic stability. The first-order decays of BTP(S) and BTBP(S) are predominantly driven by oxidative processes (˙OH and, to a lesser extent, H2O2), for which calculations demonstrate that the rate of degradation is inhibited by the formation of ligand degradation products that undergo secondary reactions with the primary products of water radiolysis. Overall, BTP(S) is ∼20% more radiolytically stable than BTBP(S), but over 90% of either ligand is consumed within 1 kGy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt00474bDOI Listing

Publication Analysis

Top Keywords

sulfonated bis-triazinyl-bipyridines
8
radiolytic degradation
8
time-resolved steady-state
4
steady-state irradiation
4
irradiation hydrophilic
4
hydrophilic sulfonated
4
bis-triazinyl-bipyridines modelling
4
modelling radiolytic
4
degradation
4
degradation efficient
4

Similar Publications