Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Medicinal preparations of iron oxide nanoparticles (IONPs) have been used as MRI contrast agents for the diagnosis of hepatic tumors and the assessment of neuroinflammation and blood-brain barrier integrity. However, it remains mostly unclear whether exposure to IONPs affects neuroinflammation under disease conditions. The present study aims to investigate the impact of IONPs on autoimmune-mediated neuroinflammation using a murine model of experimental autoimmune encephalomyelitis (EAE) that mimics human multiple sclerosis.

Methods: Mice were either left untreated or immunized with myelin oligodendrocyte glyco-protein on day 0 followed by two injections of pertussis toxin for EAE induction. The EAE mice were intravenously administered with a single dose of the carboxydextran-coated IONPs, ferucarbotran (20 mg Fe/kg) and/or saline (as vehicle) on day 18. Symptoms of EAE were daily monitored until the mice were killed on day 30. Tissue sections of the brain and spinal cord were prepared for histopathological examinations. Iron deposition, neuron demyelination and inflammatory cell infiltration were examined using histochemical staining. The infiltration of microglial and T cells, and cytokine expression were examined by immunohistochemical staining and/or reverse transcription polymerase chain reaction (RT-PCR).

Results: Iron deposition was detected in both the brain and spinal cord of EAE mice 3 days post-ferucarbotran treatment. The clinical and pathological scores of EAE, percentage of myelin loss and infiltration of inflammatory cells into the spinal cord were significantly deteriorated in EAE mice treated with ferucarbotran. Furthermore, ferucarbotran treatment increased the number of CD3, Iba-1, IL-6, Iba-1TNF-α and CD3IFN-γ cells in the spinal cord of EAE mice.

Conclusion: A single exposure to ferucarbotran exacerbated neuroinflammation and disease severity of EAE, which might be attributed to the enhanced activation of microglia and T cells. These results demonstrated that the pro-inflammatory effect of ferucarbotran on the central nervous system is closely associated with the deterioration of autoimmunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391144PMC
http://dx.doi.org/10.2147/IJN.S189327DOI Listing

Publication Analysis

Top Keywords

spinal cord
16
eae mice
12
eae
9
single dose
8
neuroinflammation murine
8
murine model
8
model experimental
8
experimental autoimmune
8
autoimmune encephalomyelitis
8
neuroinflammation disease
8

Similar Publications

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in an array of debilitating, sometimes permanent-and at times life-threatening-motor, sensory, and autonomic deficits. A broad range of therapies have been tested pre-clinically, and there has been a significant acceleration in recent years of clinical translation of potential treatments. However, it is widely appreciated among scientists and clinical professionals alike that there likely is no "silver bullet" (single treatment) that will result in complete functional restoration after SCI.

View Article and Find Full Text PDF

Botanical Nanovesicles Boost Mesenchymal Stem Cell Therapy: Next-Gen Advanced Therapy Medicinal Products for Spinal Cord Injury.

Tissue Eng Part B Rev

September 2025

Department of Pharmaceutics School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.

The poor prognosis constitutes a significant difficulty for spinal cord injury (SCI) individuals. Although mesenchymal stem cells (MSCs) hold promises as advanced therapy medicinal products (ATMPs) for SCI patients, challenges such as Good Manufacturing Practice-compliant manufacturing, cellular senescence, and limited therapeutic efficacy continue to hinder their clinical translation. Recent advances have identified botanical nanovesicles (BNs) as potent bioactive mediators capable of "priming" MSCs to self-rejuvenate, augment paracrine effect, and establish inflammatory tolerance.

View Article and Find Full Text PDF

Introduction: Interpretation and analysis of magnetic resonance imaging (MRI) scans in clinical settings comprise time-consuming visual ratings and complex neuroimage processing that require trained professionals. To combat these challenges, artificial intelligence (AI) techniques can aid clinicians in interpreting brain MRI for accurate diagnosis of neurodegenerative diseases but they require extensive validation. Thus, the aim of this study was to validate the use of AI-based AQUA (Neurophet Inc.

View Article and Find Full Text PDF

Syringomyelia is a common and heritable disorder in Cavalier King Charles Spaniels (CKCS), characterised by fluid accumulation within the spinal cord that may result in pain and neurological dysfunction. The prevalence of syringomyelia in CKCS in Australia has not previously been reported. The goal of this study was to assess the prevalence and severity of syringomyelia in magnetic resonance imaging (MRI)-screened breeding CKCS in New South Wales, Australia, from 2008 to 2024, and to evaluate changes over time.

View Article and Find Full Text PDF