Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We develop an extension of the time-dependent equation-of-motion formulation of the polarizable continuum model (EOM-TDPCM) to introduce nonequilibrium cavity field effects in quantum mechanical calculations of solvated molecules subject to time-dependent electric fields. This method has been implemented in Octopus, a state-of-the-art code for real-space, real-time time-dependent density functional theory (RT-TDDFT) calculations. To show the potential of our methodology, we perform EOM-TDPCM/RT-TDDFT calculations of trans-azobenzene in water and in other model solvents with shorter relaxation times. Our results for the optical absorption spectrum of trans-azobenzene show (i) that cavity field effects have a clear impact in the overall spectral shape and (ii) that an accurate description of the solute shape (as the one provided within PCM) is key to correctly account for cavity field effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6581418PMC
http://dx.doi.org/10.1021/acs.jctc.9b00010DOI Listing

Publication Analysis

Top Keywords

cavity field
12
field effects
12
molecules subject
8
subject time-dependent
8
time-dependent electric
8
electric fields
8
polarizable continuum
8
continuum model
8
nonequilibrium solvent
4
solvent polarization
4

Similar Publications

Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

Preventing Glioblastoma Relapse by Igniting Innate Immunity through Mitochondrial Stress in the Surgical Cavity.

Adv Mater

September 2025

Department of Neurosurgery, Qilu Hospital and Shandong Key Laboratory of Brain Health and Function Remodeling, Institute of Brain and Brain-Inspired Science, Jinan Microecological Biomedicine Shandong Laboratory, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong,

Innate immunity is crucial in orchestrating the brain immune response, however, glioblastoma multiforme (GBM) has evolved sophisticated mechanisms to evade innate immune surveillance, posing significant challenges for current immunotherapies. Here, a therapeutic strategy is reported that aims at reactivating innate immune responses in GBM via targeted induction of mitochondrial stress, thereby enhancing tumor immunogenicity. Specifically, innate immune-stimulating nanoparticles (INSTNA) are developed, encapsulating positively charged iridium-based complexes (Ir-mito) and small interfering RNA against Methylation-Controlled J protein (si-MCJ) to attenuate mitochondrial respiration.

View Article and Find Full Text PDF

Management of recurrent adenoid cystic carcinoma (ACC) in elderly patients remains challenging due to comorbidities, functional impairments, and anatomically complex tumor locations that complicate surgical access and increase operative risk. The ZAP-X Gyroscopic Radiosurgery System (ZAP Surgical Systems, Inc., San Carlos, CA, USA) offers a highly precise, non-invasive treatment modality, potentially suitable for salvage therapy in previously irradiated fields and in medically inoperable patients.

View Article and Find Full Text PDF

Backgrounds And Objectives: The enhanced-view totally extraperitoneal technique (eTEP) has gained popularity as a novel minimally invasive ventral hernia repair approach. However, this procedure becomes technically demanding once the view is no longer maintained, due to incidental pneumoperitoneum caused by peritoneal injury during the surgery. In an attempt to overcome this technical issue, we report laparoscopic extraperitoneal repair with upfront coring out of hernia defect (LERCO) where the intraperitoneal coring out of the hernia defect precedes the regular eTEP for the treatment of midline incisional ventral hernia.

View Article and Find Full Text PDF