A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Archaerhodopsin-3 (AR3) is a member of the microbial rhodopsin family of hepta-helical transmembrane proteins, containing a covalently bound molecule of all-trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light-driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all-trans retinal A1 on the spectral properties and proton-pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3-methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3-methylamino-16-nor-1,2,3,4-didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near-infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near-infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near-infrared exploitation as fluorescent voltage-gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy-based applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849744PMC
http://dx.doi.org/10.1111/php.13093DOI Listing

Publication Analysis

Top Keywords

analog pigments
8
all-trans retinal
8
ar3 pigments
8
ar3
7
pigments
5
redshifted near-infrared
4
near-infrared active
4
active analog
4
pigments based
4
based archaerhodopsin-3
4

Similar Publications