98%
921
2 minutes
20
In vivo gene editing in post-mitotic neurons of the adult brain may be a useful strategy for treating neurological diseases. Here, we develop CRISPR-Cas9 nanocomplexes and show they were effective in the adult mouse brain, with minimal off-target effects. Using this system to target Bace1 suppressed amyloid beta (Aβ)-associated pathologies and cognitive deficits in two mouse models of Alzheimer's disease. These results broaden the potential application of CRISPR-Cas9 systems to neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-019-0352-0 | DOI Listing |
Med Sci (Paris)
September 2025
CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.
The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.
View Article and Find Full Text PDFPLoS One
September 2025
Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.
View Article and Find Full Text PDFBrain
September 2025
Central European Institute of Technology Masaryk University (CEITEC MU), 625 00 Brno, Czech Republic.
Mutations in the human ADAR gene encoding adenosine deaminase acting on RNA 1 (ADAR1) cause Aicardi-Goutières syndrome 6 (AGS6); a severe auto-inflammatory encephalopathy with aberrant interferon (IFN) induction. AdarΔ2-13 null mutant mouse embryos lacking ADAR1 protein die with high levels of IFN-stimulated gene (ISG) transcripts. In Adar Mavs double mutants also lacking the Mitochondrial antiviral signaling (MAVS) adaptor, the aberrant IFN induction is prevented.
View Article and Find Full Text PDF