Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Polycyclic aromatic hydrocarbons (PAHs) continue to be common environmental contaminants. The anthropogenic sources of these compounds are broadly classed as petrogenic and pyrogenic, but more importantly specific sources including activities such as coal burning, oil spills, and application of coal tar sealants can be identified based on several types of data analysis. Several studies have focused on PAHs in sediments of lakes, streams, and stormwater ponds in larger urban areas, finding contamination arising from a number of different sources and correlating well to land use in the nearby watershed. We report here a study of PAH concentrations and source identification for river and lakebed sediments in and upstream of three smaller Wisconsin municipalities: Eau Claire (Eau Claire River), Stevens Point (Plover River), and Racine (Root River). PAH concentrations increased with increasing developed land cover and impervious surface. Concentrations within the cities and upstream agricultural or residential areas do not rise to the level found in larger urban areas or stormwater ponds servicing industrial or commercial land use, but can rise to a level that exceeds the Threshold Effects Concentration (TEC). Concentrations in areas with natural landcovers were very low, with the exception of one sample in a wetland with unusually high organic content. Multiple lines of evidence indicate that coal tar-based pavement sealants are a primary source of the contamination in all three cities. PAH concentrations reported here are likely conservative, and these results indicate that even smaller cities using detention ponds as a stormwater management practice should be prepared for costs of contaminated sediment disposal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.01.200 | DOI Listing |