98%
921
2 minutes
20
Plants require essential minerals for their growth and development that are mainly acquired from soil by their roots. Nutrient deficiency is an environmental stress that can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations are frequently employed to enhance tolerance to various abiotic stresses. These tolerances can be improved in doubled diploid genotypes. The aim of this work was to compare the impact of nutrient deficiency on the physiological and biochemical response of diploid (2x) and doubled diploid (4x) citrus seedlings: Volkamer lemon, Trifoliate orange × Cleopatra mandarin hybrid, Carrizo citrange, Citrumelo 4475. Flhorag1 ( + and willow leaf mandarin), an allotetraploid somatic hybrid, was also included in this study. Our results showed that depending on the genotype, macronutrient and micronutrient deficiency affected certain physiological traits and oxidative metabolism differently. Tetraploid genotypes, mainly Flhorag1 and Citrumelo 4475, appeared resistant compared to the other genotypes as indicated by the lesser decrease in photosynthetic parameters ( , / , and ) and the lower accumulation of oxidative markers (MDA and HO) in roots and leaves, especially after long-term nutrient deficiency. Their higher tolerance to nutrient deficiency could be explained by better activation of their antioxidant system. For the other genotypes, tetraploidization did not induce greater tolerance to nutrient deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396732 | PMC |
http://dx.doi.org/10.3389/fpls.2019.00127 | DOI Listing |
Pol Merkur Lekarski
September 2025
AMERIDENT NON-PUBLIC HEALTH CARE INSTITUTION CIVIL LAW PARTNERSHIP MARIA AND LAZARZ LEGIEN, BIELSKO-BIALA, POLAND.
Objective: Aim: Iodine is an essential nutrient for the synthesis of thyroid hormones. It has a huge impact on the normal brain development of the foetus and the health of the pregnant woman. During pregnancy and lactation, the need for iodine increases significantly.
View Article and Find Full Text PDFEnviron Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan.
Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.
View Article and Find Full Text PDFJ Hum Nutr Diet
October 2025
Haszard Biostatistics, Otago, New Zealand.
Introduction: Dependent older adults in residential aged care are at increased risk of inadequate micronutrient intakes. Knowledge of dietary intakes in this group is needed to inform clinical decision making and guide nutrition policy and menu planning. This study aimed to determine the usual intake and food sources of micronutrients of New Zealand aged-care residents.
View Article and Find Full Text PDF3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDF