98%
921
2 minutes
20
Chitosan copper (II) oxide nanocomposite was synthesized, characterized and used to synthesize [1,2,3]triazoles. Nanocomposite was characterized by using FTIR, XRD, FESEM, and EDS techniques, which reflected rough morphology. The powerful catalytic activity of hybrid nanocomposite was utilized to synthesize chalcones (3a-p) in relatively high yields (82%-98%) and multicomponent regio-selective cycloaddition of chalones, aryl halides (4), and sodium azide to afford the expected N-2-aryl[1,2,3]triazoles (5a-h) (80%-95% yield) rather than N-1-aryl[1,2,3]-triazoles (6a-h). The performance of nanomaterial was optimized by several variables. The capability of the nanocomposite was compared with previous work and the nanocomposite was found more efficient, economic and reproducible. The hybrid nanocomposite could be easily isolated form the reaction mixture and recycled four times without any significant loss of its catalytic activity. The reported catalyst is an inexpensive for good yields of the triazoles and may be used at industrial production for the reported compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.03.019 | DOI Listing |
J Anim Sci
September 2025
Department of Animal Sciences, Laval University, Québec, QC G1V 0A6, Canada.
In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemistry, College of Science, Wollo University, PO Box, 1145 Dessie, Ethiopia.
The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Physics, University of Lucknow, Lucknow, India; Department of Physics and Astrophysics, University of Delhi, India. Electronic address:
Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.
View Article and Find Full Text PDFRedox Biol
September 2025
College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea. Electronic address:
Copper oxide nanoparticles (CuONPs) are increasingly used across various industrial applications, raising concerns about their potential toxicity and necessitating comprehensive safety evaluations. In this study, we first evaluated the respiratory toxicity of CuONP exposure in a mouse model of asthma. CuONP exposure alone exacerbated asthma symptoms, as evidenced by increased airway hyperresponsiveness, inflammatory cell infiltration, and elevated cytokine production with increasing thioredoxin-interacting protein (TXNIP) expression.
View Article and Find Full Text PDF