Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dysregulation in NAD/NADH levels is associated with increased cell division and elevated levels of reactive oxygen species in rapidly proliferating cancer cells. Conversion of the ketone body acetoacetate (AcAc) to β-hydroxybutyrate (β-HB) by the mitochondrial enzyme β-hydroxybutyrate dehydrogenase (BDH) depends upon NADH availability. The β-HB-to-AcAc ratio is therefore expected to reflect mitochondrial redox. Previous studies reported the potential of hyperpolarized C-AcAc to monitor mitochondrial redox in cells, perfused organs and in vivo. However, the ability of hyperpolarized C-AcAc to cross the blood brain barrier (BBB) and its potential to monitor brain metabolism remained unknown. Our goal was to assess the value of hyperpolarized [1,3-C]AcAc in healthy and tumor-bearing mice in vivo. Following hyperpolarized [1,3-C]AcAc injection, production of [1,3-C]β-HB was detected in normal and tumor-bearing mice. Significantly higher levels of [1-C]AcAc and lower [1-C]β-HB-to-[1-C]AcAc ratios were observed in tumor-bearing mice. These results were consistent with decreased BDH activity in tumors and associated with increased total cellular NAD/NADH. Our study confirmed that AcAc crosses the BBB and can be used for monitoring metabolism in the brain. It highlights the potential of AcAc for future clinical translation and its potential utility for monitoring metabolic changes associated with glioma, and other neurological disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399277PMC
http://dx.doi.org/10.1038/s41598-019-39677-2DOI Listing

Publication Analysis

Top Keywords

tumor-bearing mice
12
associated increased
8
mitochondrial redox
8
hyperpolarized c-acac
8
hyperpolarized [13-c]acac
8
hyperpolarized
5
vivo investigation
4
investigation hyperpolarized
4
hyperpolarized [13-c]acetoacetate
4
[13-c]acetoacetate metabolic
4

Similar Publications

Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.

View Article and Find Full Text PDF

Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.

Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.

View Article and Find Full Text PDF

Synthesis, preclinical evaluation and clinical application of a novel heterodimeric tracer Ga-pentixafor-c(RGDfK) for PET-CT imaging.

Eur J Nucl Med Mol Imaging

September 2025

Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.

Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.

Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.

View Article and Find Full Text PDF

NO-Driven Janus Nanomotor Enhances T-Cell Infiltration by Reconstructing Tumor-Associated Blood and Lymphatic Vessels.

Adv Sci (Weinh)

September 2025

Department of Pharmaceutics, Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), State Key Laboratory of Discovery and Utilization of Fun

The effectiveness of antitumor immunotherapy is limited to immune cell infiltration into solid tumors, primarily via T-cell migration through tumor blood vessels. This study introduces a multifunctional nitric oxide (NO)-driven hollow gold Janus nanomotor (HAM) designed to promote tumor blood vessel normalization and increase T-cell infiltration, thereby enhancing the immune response against tumors. It is revealed that self-generated NO facilitates the penetration of HAM into tumors and increases pericyte coverage of blood vessels, thereby enhancing intratumoral T-cell infiltration.

View Article and Find Full Text PDF

Objectives: To investigate the role of circular RNA circ_0000437 in regulating biological behaviors of breast cancer cells and the molecular mechanism.

Methods: Breast cancer MCF-7 and MDA-MB-231 cells were transfected with sh-circ_0000437, mimics, inhibitor, si-CTPS1, or their respective negative controls. qRT-PCR was used to detect the expression levels of circ_0000437, let-7b-5p, CTPS1, Notch1, Hes1, and Numb in breast cancer cell lines and tissues.

View Article and Find Full Text PDF