Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The objective is to make the strain deviation before and after implantation adjacent to the femoral implant as close as possible to zero. Genetic algorithm is applied for this optimization of strain deviation, measured in eight separate positions. The concept of composite desirability is introduced in such a way that if the microstrain deviation values for all eight cases are 0, then the composite desirability is 1. Artificial neural network (ANN) models are developed to capture the correlation of the microstrain in femur implants using the data generated through finite element simulation. Then, the ANN model is used as the surrogate model, which in combination with the desirability function serves as the objective function for optimization. The optimum achievable deviation was found to vary with the bone condition. The optimum implant geometry varied for different bone condition, and the findings act as guideline for designing patient-specific implant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3191 | DOI Listing |