Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although aquaria are common features of homes and other buildings, little is known about how environmental perturbations (i.e., tank cleaning, water changes, addition of habitat features) impact the diversity and succession of aquarium microbial communities. In this study, we sought to evaluate the hypotheses that newly established aquaria show clear microbial successional patterns over time and that common marine aquarium-conditioning practices, such as the addition of ocean-derived "live rocks" (defined as any "dead coral skeleton covered with crustose coralline algae" transferred into an aquarium from open ocean habitats) impact the diversity of microbial populations as well as nitrogen cycling in aquaria. We collected water chemistry data alongside water and sediment samples from two independent and newly established saltwater aquaria over a 3-month period. Microbial communities in samples were assessed by DNA extraction, amplification of the 16S rRNA gene, and Illumina MiSeq sequencing. Our results showed clear and replicable patterns of community succession in both aquaria, with the existence of multiple stable states for aquarium microbial assemblages. Notably, our results show that changes in aquarium microbial communities do not always correlate with water chemistry measurements and that operational taxonomic unit (OTU)-level patterns relevant to nitrogen cycling were not reported as statistically significant. Overall, our results demonstrate that aquarium perturbations have a substantial impact on microbial community profiles of aquarium water and sediment and that the addition of live rocks improves nutrient cycling by shifting aquarium communities toward a more typical saltwater assemblage of microbial taxa. Saltwater aquaria are living systems that support a complex biological community of fish, invertebrates, and microbes. The health and maintenance of saltwater tanks are pressing concerns for home hobbyists, zoos, and professionals in the aquarium trade; however, we do not yet understand the underlying microbial species interactions and community dynamics which contribute to tank setup and conditioning. This report provides a detailed view of ecological succession and changes in microbial community assemblages in two saltwater aquaria which were sampled over a 3-month period, from initial tank setup and conditioning with "live rocks" through subsequent tank cleanings and water replacement. Our results showed that microbial succession appeared to be consistent and replicable across both aquaria. However, changes in microbial communities did not always correlate with water chemistry measurements, and aquarium microbial communities appear to have shifted among multiple stable states without any obvious buildup of undesirable nitrogen compounds in the tank environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382968PMC
http://dx.doi.org/10.1128/mSphere.00043-19DOI Listing

Publication Analysis

Top Keywords

microbial communities
20
saltwater aquaria
16
aquarium microbial
16
microbial
14
microbial community
12
water chemistry
12
aquaria
9
aquarium
9
community succession
8
nutrient cycling
8

Similar Publications

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Demystifying the link between periodontitis and oral cancer: a systematic review integrating clinical, pre-clinical, and in vitro data.

Cancer Metastasis Rev

September 2025

Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.

Chronic inflammation and microbial dysbiosis have been implicated in the development of head and neck squamous cell carcinoma (HNSCC), particularly oral cavity squamous cell carcinoma (OSCC). Periodontitis is a common chronic inflammatory disease characterized by the progressive destruction of tooth-supporting structures. While periodontitis Has been associated with an increased risk of OSCC in epidemiological and mechanistic studies, the strength of this association is unclear.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide, has raised concerns regarding its impact on human health and the environment due to its widespread and excessive use. Adverse effects on the immune system have been reported. In this study, 26 vineyard workers in Veneto vineyards were examined before and after glyphosate applications to investigate possible immune parameter changes.

View Article and Find Full Text PDF