A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Liraglutide prevents β-cell apoptosis via inactivation of NOX2 and its related signaling pathway. | LitMetric

Liraglutide prevents β-cell apoptosis via inactivation of NOX2 and its related signaling pathway.

J Diabetes Complications

NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin 300070, PR China. Electronic address:

Published: April 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: High glucose (HG)-induced pancreatic β-cell apoptosis may be a major contributor to the progression of diabetes mellitus (DM). NADPH oxidase (NOX2) has been considered a crucial regulator in β-cell apoptosis. This study was designed to evaluate the impact of GLP-1 receptor agonist (GLP-1Ra) liraglutide on pancreatic β-cell apoptosis in diabetes and the underlying mechanisms involved.

Methods: The diabetic rat models induced by streptozotocin (STZ) and a high fat diet (HFD) received 12 weeks of liraglutide treatment. Hyperglycemic clamp test was carried out to evaluate β-cell function in vivo. Flow cytometry analysis was used to measure apoptosis rates in vitro. DCFH-DA method was used to detected ROS level in vivo and in vitro.

Results: Liraglutide significantly improved islet function and morphology in diabetic rats and decreased cell apoptosis rates. Thr183/Thr185 p-JNK1/2 and NOX2 levels reduced in diabetic rats and HG-induced INS-1 cell following liraglutide treatment. In addition, liraglutide upregulated the phosphorylation of AMPKα (p-AMPKα), which prevented NOX2 activation and alleviated HG-induced β-cell apoptosis.

Conclusion: The p-AMPKα/NOX2/JNK1/2 pathway is essential for liraglutide to attenuate HG-induced β-cell apoptosis, which further proves that GLP-1Ras may become promising therapeutics for diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdiacomp.2018.12.013DOI Listing

Publication Analysis

Top Keywords

β-cell apoptosis
20
pancreatic β-cell
8
diabetes mellitus
8
liraglutide treatment
8
apoptosis rates
8
diabetic rats
8
hg-induced β-cell
8
liraglutide
7
β-cell
7
apoptosis
7

Similar Publications