98%
921
2 minutes
20
The mechanism underlying the progression of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis (SPMS), characterized by accumulating fixed disability, is yet to be fully understood. Although alterations in the gut microbiota have recently been highlighted in multiple sclerosis pathogenesis, the mechanism linking the altered gut environment with the remote CNS pathology remains unclear. Here, we analyse human CD4+ memory T cells expressing the gut-homing chemokine receptor CCR9 and found a reduced frequency of CCR9+ memory T cells in the peripheral blood of patients with SPMS relative to healthy controls. The reduction in the proportion of CCR9+ cells among CD4+ memory T cells (%CCR9) in SPMS did not correlate with age, disease duration or expanded disability status scale score, although %CCR9 decreased linearly with age in healthy controls. During the clinical relapse of both, relapsing-remitting multiple sclerosis and neuromyelitis optica, a high proportion of cells expressing the lymphocyte activating 3 gene (LAG3) was detected among CCR9+ memory T cells isolated from the CSF, similar to that observed for mouse regulatory intraepithelial lymphocytes. In healthy individuals, CCR9+ memory T cells expressed higher levels of CCR6, a CNS-homing chemokine receptor, and exhibited a regulatory profile characterized by both the expression of C-MAF and the production of IL-4 and IL-10. However, in CCR9+ memory T cells, the expression of RORγt was specifically upregulated, and the production of IL-17A and IFNγ was high in patients with SPMS, indicating a loss of regulatory function. The evaluation of other cytokines supported the finding that CCR9+ memory T cells acquire a more inflammatory profile in SPMS, reporting similar aspects to CCR9+ memory T cells of the elderly healthy controls. CCR9+ memory T cell frequency decreased in germ-free mice, whereas antibiotic treatment increased their number in specific pathogen-free conditions. Here, we also demonstrate that CCR9+ memory T cells preferentially infiltrate into the inflamed CNS resulting from the initial phase and that they express LAG3 in the late phase in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Antibiotic treatment reduced experimental autoimmune encephalomyelitis symptoms and was accompanied by an increase in CCR9+ memory T cells in the peripheral blood. Antibodies against mucosal vascular addressin cell adhesion molecule 1 (MADCAM1), which is capable of blocking cell migration to the gut, also ameliorated experimental autoimmune encephalomyelitis. Overall, we postulate that the alterations in CCR9+ memory T cells observed, caused by either the gut microbiota changes or ageing, may lead to the development of SPMS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439331 | PMC |
http://dx.doi.org/10.1093/brain/awz012 | DOI Listing |
mBio
September 2025
Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.
View Article and Find Full Text PDFPediatr Infect Dis J
September 2025
From the Pediatric Infectious Diseases Unit, Gregorio Marañón University Hospital, Madrid, Spain.
Background: Vaccination is a key strategy to reduce infectious disease mortality. In pediatric heart transplant recipients (HTRs), the use of immunosuppressive therapy weakens immune responses, increasing the risk of viral infections. This study aimed to evaluate the immunogenicity of hepatitis B virus (HBV) revaccination in this vulnerable population.
View Article and Find Full Text PDFFront Immunol
September 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.
View Article and Find Full Text PDFBiochem Biophys Rep
June 2025
Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.
Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.
Immunooncol Technol
September 2025
Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Background: Breast cancer is a systemic disease, yet the impact of tumor molecular subtype and disease stage on the systemic immune landscape remains poorly understood. In this study, we comprehensively analyzed the systemic immune landscape in a large cohort of breast cancer patients, encompassing all molecular subtypes and disease stages, alongside a control group of healthy donors.
Materials And Methods: Using multi-parameter flow cytometry, we assessed the abundance, phenotype, and activation status of diverse innate and adaptive immune cell populations across peripheral blood samples from 355 breast cancer patients and 65 healthy donors.