A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A framework for automated anomaly detection in high frequency water-quality data from in situ sensors. | LitMetric

A framework for automated anomaly detection in high frequency water-quality data from in situ sensors.

Sci Total Environ

ARC Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS), Australia; Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia; School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisba

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monitoring the water quality of rivers is increasingly conducted using automated in situ sensors, enabling timelier identification of unexpected values or trends. However, the data are confounded by anomalies caused by technical issues, for which the volume and velocity of data preclude manual detection. We present a framework for automated anomaly detection in high-frequency water-quality data from in situ sensors, using turbidity, conductivity and river level data collected from rivers flowing into the Great Barrier Reef. After identifying end-user needs and defining anomalies, we ranked anomaly importance and selected suitable detection methods. High priority anomalies included sudden isolated spikes and level shifts, most of which were classified correctly by regression-based methods such as autoregressive integrated moving average models. However, incorporation of multiple water-quality variables as covariates reduced performance due to complex relationships among variables. Classifications of drift and periods of anomalously low or high variability were more often correct when we applied mitigation, which replaces anomalous measurements with forecasts for further forecasting, but this inflated false positive rates. Feature-based methods also performed well on high priority anomalies and were similarly less proficient at detecting lower priority anomalies, resulting in high false negative rates. Unlike regression-based methods, however, all feature-based methods produced low false positive rates and have the benefit of not requiring training or optimization. Rule-based methods successfully detected a subset of lower priority anomalies, specifically impossible values and missing observations. We therefore suggest that a combination of methods will provide optimal performance in terms of correct anomaly detection, whilst minimizing false detection rates. Furthermore, our framework emphasizes the importance of communication between end-users and anomaly detection developers for optimal outcomes with respect to both detection performance and end-user application. To this end, our framework has high transferability to other types of high frequency time-series data and anomaly detection applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.085DOI Listing

Publication Analysis

Top Keywords

anomaly detection
20
priority anomalies
16
situ sensors
12
detection
9
framework automated
8
automated anomaly
8
high frequency
8
water-quality data
8
data situ
8
high priority
8

Similar Publications