Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The nature of functionalization of alkyl chains of imidazolium-based surface active ionic liquids (SAILs) with amide or ester moiety led to contrasting complexation behavior toward the globular protein, bovine serum albumin. This prompted us to further investigate the SAIL-dependent colloidal behavior of another globular protein, β-lactoglobulin (βLG), to probe the origin of varying structural transformations in globular proteins induced by SAILs. Herein, we investigated the colloidal systems of βLG, rich in β-sheet structure, in the presence of four structurally different SAILs using a multitechnique approach. The complexation behavior, both at the air-solution interface and in bulk, is supplemented by different techniques. Docking studies have complemented the obtained experimental results. The specificity of structure, H-bonding ability of SAILs, and inherent structure of protein are found to govern their complexation behavior in terms of size, shape, and polarity of protein-SAIL complexes along with varying degrees of structural alterations in globular proteins. The present work is expected to be very useful in establishing a deep understanding of the structure-property relationship between the nature of proteins and SAILs for their complexation and colloidal behavior for various biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b11610 | DOI Listing |