Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Zero-valent iron (ZVI) is widely applied for reduction of chlorohydrocarbons in water. Since the dechlorination occurs at the iron surface, marked differences in rate constants are commonly found for nanoscale and microscale ZVI. It has already been shown for trichloroethene (TCE) adsorbed to activated carbon (AC) that the dechlorination reaction is shifted to the carbon surface simply by contacting the AC with highly reactive nanoscale ZVI particles. Transfer of reactive species to the adsorbed pollutant was discussed. The present study shows that even low price and very low reactive microscale ZVI can also be utilized for an effective dechlorination process. Compared to the reaction rate at the iron surface itself, an enormous acceleration of the dechlorination rate for chlorinated ethenes was observed, reaching activity levels such as known for nanoscale ZVI. When fibrous AC is brought into direct contact with microscale ZVI the iron-surface-normalised dechlorination rate constants increased by up to four orders of magnitude. This implies that the dechlorination reaction is fully transferred to the AC surface. At the same time, the anaerobic corrosion of the same material was not substantially affected. Thus, the utilization of iron's reduction equivalents towards dechlorination (dechlorination efficiency) can be considerably enhanced. A screening with various AC types showed that the extent of rate acceleration depends strongly on the surface chemistry of the AC. By means of temperature-programmed desorption, it could be shown that concentration and type of oxygen surface groups determine the redox-mediation properties. Quinone/hydroquinone groups were identified as being the main drivers for electron-transfer processes, but to some extent other redox-active groups such as chromene and pyrone can also act as redox mediators. AC overall plays the role of a catalyst rather than a reactant. The present study derives recommendations for practical application of the findings in water-treatment approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.070 | DOI Listing |