Characterization of a Potent p53-MDM2 Inhibitor, RG7112 in Neuroblastoma Cancer Cell Lines.

Cancer Biother Radiopharm

Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Published: May 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuroblastoma (NB) is one of the most aggressive and common solid tumors in pediatrics. Development of effective new therapeutics for NB is in progress to help reduce mortality and morbidity of the disease, particularly in relapsed patients. The tumor suppressor protein p53 plays a critical role in multiple signaling pathways to maintain cellular hemostasis. Dysregulation of p53 protein and/or molecular aberrations have been associated with multiple human malignancies. p53 stability and protein activity is negatively regulated by the E3 ubiquitin ligase (MDM2). Thus, targeting p53-MDM2 protein-protein interaction is a feasible and promising therapeutic strategy to restore the physiological function of p53 in cancer cells. RG7112 is a highly potent and selective small molecule inhibitor, which target a unique structure located within p53 binding motif of MDM2. The efficacy of RG7112 using NB cell lines was examined. Two wild-type (WT)-p53 NB cell lines IMR5 and LAN-5, a mutant p53 cell line SK-N-BE(2), and a WT-p53/p14 deleted cell line SH-EP were employed. Data showed that RG7112 significantly reduced cellular viability of IMR5 (IC, 562 nM) and LAN-5 (IC, 430 nM), but not SK-N-BE(2) and SH-EP cells. Further, RG7112 restores p53 and p21 protein levels in IMR5 and LAN-5 in a dose-dependent manner. RG7112 induces cell cycle arresting (60% G1 arresting) in WT-p53 cells (IMR5), but no pronounced effect observed in SK-N-BE(2). In this study, 15 different drugs in combination with RG7112 in IMR5 cell line and identified venetoclax (Bcl-2/Bcl-xL inhibitor) as a promising candidate were evaluated. Taken together, these findings provide initial proof-of-concept data for further investigations of RG7112 in selected subgroups of NB patients.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cbr.2018.2732DOI Listing

Publication Analysis

Top Keywords

cell lines
12
rg7112
8
cells rg7112
8
imr5 lan-5
8
cell
7
p53
7
imr5
5
characterization potent
4
potent p53-mdm2
4
p53-mdm2 inhibitor
4

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.

View Article and Find Full Text PDF

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF