98%
921
2 minutes
20
Honey is the natural sweet substance produced by Apis mellifera honeybees in Europe. Depending on the country/region, the A. mellifera subspecies native to Europe belong to three different lineages: A (A. m. iberiensis), M (A. m. iberiensis and A. m. mellifera) and C (A. m. ligustica and A. m. carnica). In this work, two DNA-based approaches were developed with the aim of entomological authentication of European honeys. A cytb specific PCR assay was proposed to identify A-lineage honeybees, while a second method based on real-time PCR coupled to high resolution melting analysis targeting the COI gene was developed to differentiate C- and M-lineages honeybees. The proposed methodologies were validated successfully with honeys of known origin and applied to the entomological authentication of 20 commercial samples from different European countries. The results highlight the predominance of honeys from C-lineage honeybees in Europe, except in Iberian Peninsula countries (honey from A-lineage honeybees).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2018.12.119 | DOI Listing |
PLoS One
September 2025
Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany.
Pollination is essential for maintaining biodiversity and ensuring food security, and in Europe it is primarily mediated by four insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera). However, traditional monitoring methods are costly and time consuming. Although recent automation efforts have focused on butterflies and bees, flies, a diverse and ecologically important group of pollinators, have received comparatively little attention, likely due to the challenges posed by their subtle morphological differences.
View Article and Find Full Text PDFBMC Ecol Evol
September 2025
Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohammed Ben Abdellah, P.O. Box 1796 (Atlas), Fez, 30000, Morocco.
Background: The relationships between floral traits and pollinators have been extensively studied over the last few decades. The concept of pollination syndrome suggests that plants pollinated by the same group of pollinators tend to develop similar combinations of floral traits. However, several studies have demonstrated the low predictability of these trait combinations and found high levels of pollination generalization within plant communities.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.
View Article and Find Full Text PDFCurr Biol
September 2025
Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. Electronic address:
A new study shows that, as floral resources decline over the season, honey bees gradually increase their tolerance to attacks when foraging, a shift that may enable them to exploit other colonies' honey stores during robbing season.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, P. R. China.
In recent years, the hydrazide skeleton, as a pivotal class of nitrogen-containing structures, has garnered considerable attention in medicinal chemistry and organic synthesis owing to its unique chemical versatility and broad-spectrum biological activities. In this study, a series of thiazole-containing benzoylhydrazine derivatives -, -, and - with structural divergence from conventional hydrazide-based molecular frameworks were designed, synthesized, and evaluated for their antifungal/antioomycete activities. The antifungal/antioomycete assay showed that some of the targeted compounds exhibited remarkable and broad-spectrum antifungal activities.
View Article and Find Full Text PDF