98%
921
2 minutes
20
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD. This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435825 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1985-18.2019 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
The ingression of neural crest cells from an ectodermal to a mesodermal layer is regulated by instructive, directional cues and potentially stochastic, biophysical parameters such as differential cell adhesion and tension heterogeneity. However, a cohesive framework in which to consider how various influences contribute to ingression remains elusive. Here, we observe the cell behaviors of the murine neural crest in three dimensions over time and apply a free energy framework to more wholly understand why cells ingress.
View Article and Find Full Text PDFPLoS One
September 2025
Escuela Nacional de Estudios Superiores Unidad Juriquilla, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.
In the adult brain, neurogenesis primarily occurs in the dentate gyrus of the hippocampus (DG) and the olfactory bulbs, with new cells migrating from the subventricular zone. Additionally, small amounts of cell proliferation have been observed in the preoptic area (POA) and the amygdala (AMG), regions involved in the control of male sexual behavior. Sexual activity induces a reward state mediated by opioids, and our group previously demonstrated that neurogenesis induced by paced mating is opioid dependent in female rats.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
The charge density wave (CDW), a charge ordering phase, offers a valuable framework for exploring electron-electron interactions, electron-phonon coupling, and quantum phase transitions. In CDW materials, carrier density substantially influences the ground state, typically altered through foreign ion doping and investigated at macro- or mesoscopic scales via photoemission or transport techniques. However, atomic-scale visualization, particularly in doped CDW systems without foreign ions, remains rare.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania.
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct absorption into the bloodstream, and its ability to bypass hepatic metabolism. The thin films obtained via pulsed laser deposition consist of micro- and nanoparticles capable of migrating through skin pores upon contact.
View Article and Find Full Text PDFSci Rep
August 2025
xi'an Aeronautical Polytechnic Institute, Xi'an, 710089, Shaanxi, China.
In order to further study the dynamic response of granular systems under impact loading, this paper establishes an SHPB test model of metal powder based on the discrete element method (DEM) of particles using PFC3D software. The High Velocity Compaction (HVC) process is simulated by numerical simulation. The distribution and change rules of particle movement are observed from different angles; the change rules of particle normal velocities at different positions in the particle sample are analyzed; the formation process of force chains under impact is observed; and the change rules of contact forces between particles at different positions are analyzed.
View Article and Find Full Text PDF