Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The counterirritation phenomenon known as conditioned pain modulation, or diffuse noxious inhibitory control in animals, is of increasing interest due to its utility in predicting chronic pain and treatment response. It features considerable interindividual variability, with large subsets of pain patients and even normal volunteers exhibiting hyperalgesia rather than hypoalgesia during or immediately after receiving a conditioning stimulus. We observed that mice undergoing tonic inflammatory pain in the abdominal cavity (the conditioning stimulus) display hyperalgesia, not hypoalgesia, to noxious thermal stimulation (the test stimulus) applied to the hindpaw. In a series of parametric studies, we show that this hyperalgesia can be reliably observed using multiple conditioning stimuli (acetic acid and orofacial formalin), test stimuli (hindpaw and forepaw-withdrawal, tail-withdrawal, hot-plate, and von Frey tests) and genotypes (CD-1, DBA/2, and C57BL/6 mice and Sprague-Dawley rats). Although the magnitude of the hyperalgesia is dependent on the intensity of the conditioning stimulus, we find that the direction of effect is dependent on the effective test stimulus intensity, with lower-intensity stimuli leading to hyperalgesia and higher-intensity stimuli leading to hypoalgesia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/j.pain.0000000000001454 | DOI Listing |