A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coastal vegetated ecosystems are major organic carbon (OC) and total nitrogen (TN) sinks, but the mechanisms that regulate their spatial variability need to be better understood. Here we assessed how superficial sedimentary OC and TN within intertidal vegetated assemblages (saltmarsh and seagrass) vary along a flow gradient, which is a major driver of sediment grain size, and thus of organic matter (OM) content. A significant relationship between flow current velocity and OC and TN stocks in the seagrass was found, but not in the saltmarsh. OC and TN stocks of the saltmarsh were larger than the seagrass, even though that habitat experiences shorter hydroperiods. Mixing models revealed that OM sources also varied along the flow gradient within the seagrass, but not in the saltmarsh, showing increasing contributions of microphytobenthos (17-32%) and decreasing contributions of POM (45-35%). As well, OM sources varied vertically as microphytobenthos contribution was highest at the higher intertidal saltmarsh (48%), but not POM (39%). Macroalgae, seagrass and saltmarsh showed low contributions. Local trade-offs between flow current velocities, hydroperiod and structural complexity of vegetation must be considered, at both horizontal and vertical (elevation) spatial dimensions, for better estimates of blue carbon and nitrogen in coastal ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345834PMC
http://dx.doi.org/10.1038/s41598-018-37031-6DOI Listing

Publication Analysis

Top Keywords

flow gradient
12
seagrass saltmarsh
12
superficial sedimentary
8
carbon nitrogen
8
nitrogen coastal
8
coastal vegetated
8
vegetated assemblages
8
flow current
8
sources varied
8
saltmarsh
6

Similar Publications