Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This article focuses on the production side of clinical data work, or data recording work, and in particular, on its multiplicity in terms of data variability. We report the findings from two case studies aimed at assessing the multiplicity that can be observed when the same medical phenomenon is recorded by multiple competent experts, yet the recorded data enable the knowledgeable management of illness trajectories. Often framed in terms of the latent unreliability of medical data, and then treated as a problem to solve, we argue that practitioners in the health informatics field must gain a greater awareness of the natural variability of data inscribing work, assess it, and design solutions that allow actors on both sides of clinical data work, that is, the production and care, as well as the primary and secondary uses of data to aptly inform each other's practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1460458218824705 | DOI Listing |