Discovery of a Novel cGAMP Competitive Ligand of the Inactive Form of STING.

ACS Med Chem Lett

Departments of Chemistry, Immunology, Chemistry Modeling and Informatics, In Vitro Pharmacology, Target Protein Design and Structural Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drugging large protein pockets is a challenge due to the need for higher molecular weight ligands, which generally possess undesirable physicochemical properties. In this communication, we highlight a strategy leveraging small molecule active site dimers to inhibit the large symmetric binding pocket in the STING protein. By taking advantage of the 2:1 binding stoichiometry, maximal buried interaction with STING protein can be achieved while maintaining the ligand physicochemical properties necessary for oral exposure. This mode of binding requires unique considerations for potency optimization including simultaneous optimization of protein-ligand as well as ligand-ligand interactions. Successful implementation of this strategy led to the identification of , which exhibits good oral exposure, slow binding kinetics, and functional inhibition of STING-mediated cytokine release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331172PMC
http://dx.doi.org/10.1021/acsmedchemlett.8b00466DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
sting protein
8
oral exposure
8
discovery novel
4
novel cgamp
4
cgamp competitive
4
competitive ligand
4
ligand inactive
4
inactive form
4
form sting
4

Similar Publications

The chimpanzee adenovirus-vectored vaccine developed by the University of Oxford (ChAdOx1 nCoV-19) showed good stability when stored in refrigerator. However, the vaccine manufacturer prefers its transportation in frozen condition. Data regarding the stability of the vaccine after exposure to repeated freezing processes have not been explored yet.

View Article and Find Full Text PDF

Influence of drying techniques on the properties of gelatin derived from Atlantic salmon skin.

Int J Biol Macromol

September 2025

Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.

The properties of gelatin derived from fish processing by-products, such as Atlantic salmon (Salmo salar) skin, are strongly influenced by the drying method used during production. This study investigated the impacts of four drying methods on the extraction yield, physicochemical attributes, and gel characteristics of gelatin: freeze-dried gelatin (FDG), spray-dried gelatin (SDG), vacuum-dried gelatin (VDG), and hot air-dried gelatin (HDG) extracted from Atlantic salmon (Salmo salar) skin. The yields of FDG, VDG, and HDG were similar (15.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) are powerful vectors for the intracellular delivery of a diverse array of therapeutic molecules. Despite their potential, the rational design of CPPs remains a challenging task that often requires extensive experimental efforts and iterations. In this study, we introduce an innovative approach for the de novo design of CPPs, leveraging the strengths of machine learning (ML) and optimization algorithms.

View Article and Find Full Text PDF

Submicron metal-bearing aerosols from an industrial hub of the North China Plain.

J Hazard Mater

September 2025

Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan. Electronic address:

Particulate matter emitted from heavy industries is a major source of atmospheric metals in the North China Plain (NCP). In this study, submicron particles (0.1-1.

View Article and Find Full Text PDF

To study the impact of pH-responsive labels prepared using traditional and different printing methods on fruit freshness monitoring and preservation, this study firstly optimized coaxial 3D printed labels by analyzing core-shell ratios and infill ratios, and predicted the impact of printing design on functionality of labels via four models. Then, the physicochemical properties of cast, dual-nozzle 3D printed, and coaxial 3D printed labels were compared. Finally, lightweight deep convolutional neural network models were used to enhance early warning intelligence.

View Article and Find Full Text PDF