Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pure metal-organic framework (MOF) layers deposited on porous supports are important candidates for molecular sieving membranes, but their performance usually deviates from theoretical estimations. Here, we combine step-wise scanning electron microscopy imaging, time-resolved synchrotron X-ray scattering, terahertz infrared spectroscopy, and density functional theory calculation to investigate the ZIF-8 membrane formation on two types (polydopamine and TiO) of functionalized porous supports. Though molecular sieving of ZIF-8 membranes for smaller gases (He, H, and CO) can be achieved with both types of functionalized supports, we unravel that the strong interaction between MOF and polydopamine can disrupt the formation of "perfect" MOF crystals at the interface, leading to a "contracted" MOF structure with partially uncoordinated imidazolate ligands. This further affects the low-frequency dynamical parameters of the framework and inhibits the effective seeded growth. Eventually, it leads to an unexpected loss of selectivity for the bulkier gases (N and CH) for ZIF-8 on polydopamine-functionalized supports. This work links the dynamical aspects of MOFs with their gas transport behavior and highlights the importance of regulating the interfacial weak forces to preserve the ideal molecular sieving efficiency of MOF membranes, which also provides guidance for defect engineering of MOF film fabrication for sensing and electronic devices beyond membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b20570 | DOI Listing |