98%
921
2 minutes
20
Objectives: Vascular wall calcification is a major pathophysiological component of atherosclerotic disease with many similarities to osteogenesis. Mechanical stress of the vascular wall may theoretically contribute to the proliferative processes by endothelial and interstitial cells. The aim of the study was to investigate the effect of mechanical stress on the expression of some calcification-related genes in primary human endothelial and interstitial cells, and how endothelial cells may stimulate the fibroblast and smooth muscle cells.
Methods: Human umbilical vein endothelial and interstitial cells were subjected to cyclic stretch using a FlexCell® bioreactor, and interstitial cells were also subjected to tensile strain in cultures embedded in 3-dimensional collagen gels. The medium from endothelial cells was used to stimulate the gel-cultured interstitial cells, or the endothelium was sown directly on top. For comparison, human endothelial and smooth muscle cells were isolated from aortic wall fragments of patients with and without the aortic aneurysm. The expression of genes was measured using quantitative PCR.
Results: Four hours of cyclic stretch applied to cultured endothelial cells upregulated the mRNA expression of bone morphogenetic protein 2 (BMP-2), a major procalcific growth factor. When applied to a 3-dimensional culture of vascular interstitial cells, the medium from prestretched endothelial cells decreased the expression of BMP-2 and periostin mRNA in the fibroblasts. The static tension in gel-cultured interstitial cells upregulated BMP-2 mRNA expression. The addition of endothelial cells on the top of this culture also reduced mRNA of anticalcific genes, periostin and osteopontin. Similar changes were observed in smooth muscle cells from human aortic aneurysms compared to cells from the healthy aorta. Aortic aneurysm endothelial cells also showed an increased expression of BMP-2 mRNA.
Conclusions: Endothelial cells respond to mechanical stress by upregulation of pro-osteogenic factor BMP-2 mRNA and modulate the expression of other osteogenic factors in vascular interstitial cells. Endothelial cells may, thus, contribute to vascular calcification when exposed to mechanical stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icvts/ivy339 | DOI Listing |
Sud Med Ekspert
January 2025
Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.
Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.
Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.
Angiogenesis
September 2025
Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla la Mancha (SESCAM), 45071, Toledo, Spain.
Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.
View Article and Find Full Text PDFAngiogenesis
September 2025
Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.
View Article and Find Full Text PDFAngiogenesis
September 2025
Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.
View Article and Find Full Text PDFHLA
September 2025
Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
Abnormal expression of HLA class Ib, MICA and MICB molecules is associated with the evolution of pathological conditions and clinical settings. Here, we use RNA-sequencing data from two publicly-available projects, from different human organs and tissues and at single-cell level, to present their transcriptional expression throughout the human body, in comparison to that of HLA class Ia, HLA class II, their costimulatory molecules, and the main HLA transcription factors. Our analyses for 21 target genes reveal that median gene expression differs by orders of magnitude and that the classical/non-classical HLA distinction is not absolute for overall expression.
View Article and Find Full Text PDF