Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an acoustic levitation system that automatically injects, transports, merges and ejects liquid droplets in mid-air. The system consists of a phased array operating at 40 kHz on top of a plane reflector. The phase array generates multiple focal points at independent positions that form standing waves between the array and the reflector. In the reflector there is an inlet for a piezoelectric droplet injector which automatically inserts liquid droplets at the lower pressure nodes of the standing waves, and a hole that serves as an outlet for ejecting the processed droplets out of the system. Simulations of the acoustic radiation potential acting on the levitating droplets are in good agreement with the experiments. High-speed footage captured the functioning of the system in four fluidic operations: injection, transport, merging and ejection of liquid droplets. Having these operations integrated reliably into a single automatic system paves the way for the adoption of mid-air acoustophoretic processing in biological, chemical and pharmaceutical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5063715DOI Listing

Publication Analysis

Top Keywords

liquid droplets
12
merging ejection
8
standing waves
8
droplets
6
system
5
automatic contactless
4
contactless injection
4
injection transportation
4
transportation merging
4
ejection droplets
4

Similar Publications

Giant mobility of surface-trapped ionic charges following liquid tribocharging.

Proc Natl Acad Sci U S A

September 2025

Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.

The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.

View Article and Find Full Text PDF

Collagen peptides from Skipjack tuna (Katsuwonus pelamis) bones: Composition, characterization, and mechanism of high-fat diet-induced NAFLD amelioration.

Food Res Int

November 2025

National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address: chichang

This study aimed to analyze the amino acid composition and characterize the sequences of collagen peptides from Skipjack tuna bones (TBCPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and further investigate the function and mechanism of action of TBCPs in nonalcoholic fatty liver disease (NAFLD). The results showed that TBCPs contain 16 types of amino acids, among which glycine is the most abundant, and hydrophobic amino acids account for 40.75 %.

View Article and Find Full Text PDF

Experimental and mechanism analysis of vacuum cooling for high temperature liquid food.

J Food Sci Technol

October 2025

Department of mechanical engineering, Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, 300134 China.

To minimize the liquid splashing in vacuum cooling, the mass and temperature changes of liquid food were measured by changing the conditions such as the volume ratio of the solution to the container, the pore area, the initial temperature and the terminal temperature, and the effects of different conditions on the ineffective water loss rate were derived from the test results. When the opening area is 1.13cm, the ineffective water loss rate is the largest.

View Article and Find Full Text PDF

Droplet Impact on a Superhydrophobic Surface at Low Weber Numbers.

Langmuir

September 2025

SERB Sponsered Microfluidics Laboratory, Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal 700032, India.

This study investigates the dynamic behavior of water droplets impacting a superhydrophobic surface (SHS) at low Weber numbers ( < 17). SHS is fabricated by a chemical coating process on magnesium AZ31 alloy. The surfaces exhibit a Cassie-Baxter wetting state, showing a contact angle of approximately 155°on the surfaces.

View Article and Find Full Text PDF

A Low-Voltage-Driven Droplet Sorter for High-Stability and Small-Deformation Droplet Sorting.

Electrophoresis

September 2025

School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing, China.

Electric droplet sorting is widely applied in the screening of target molecules, cells, drugs, and microparticles. Previous studies have made several optimizations on the electrode materials, structures, and arrangements. However, voltages of over 1 kV are required to realize droplet sorting, which causes the undesired droplet splitting.

View Article and Find Full Text PDF