Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Cystic fibrosis (CF) lung disease commences in infancy, and understanding the role of the microbiota in disease pathogenesis is critical. This study examined and compared the lower airway microbiota of infants with and without CF and its relationship to airway inflammation in the first months of life.
Methods: Infants newly-diagnosed with CF were recruited into a single-centre study in Melbourne, Australia from 1992 to 2001. Bronchoalveolar lavage was performed at study entry. Healthy infants undergoing bronchoscopy to investigate chronic stridor acted as controls. Quantitative microbiological culture was performed and inflammatory markers were measured contemporaneously. 16S ribosomal RNA gene analysis was performed on stored samples.
Results: Thirteen bronchoalveolar samples from infants with CF and nine from control infants, collected at median ages of 1.8-months (25th-75th percentile 1.5 to 3.1-months) and 5-months (25th-75th percentile 2.9 to 8.2-months) respectively, provided 16S rRNA gene data. Bacterial biomass was positively associated with inflammation. Alpha diversity was reduced in infants with CF and between-group compositional differences were apparent. These differences were driven by increased Staphylococcus and decreased Fusobacterium and were most apparent in symptomatic infants with CF.
Conclusion: In CF lung disease, differences in lower airway microbial community composition and structure are established by age 6-months.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586525 | PMC |
http://dx.doi.org/10.1016/j.jcf.2018.12.003 | DOI Listing |