Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: The amount of coronary artery calcium determined in CT scans is a well established predictor of cardiovascular events. However, high interscan variability of coronary calcium quantification may lead to incorrect cardiovascular risk assignment. Partial volume effect contributes to high interscan variability. Hence, we propose a method for coronary calcium quantification employing partial volume correction.
Methods: Two phantoms containing artificial coronary artery calcifications and 293 subject chest CT scans were used. The first and second phantom contained nine calcifications and the second phantom contained three artificial arteries with three calcifications of different volumes, shapes and densities. The first phantom was scanned five times with and without extension rings. The second phantom was scanned three times without and with simulated cardiac motion (10 and 30 mm/s). Chest CT scans were acquired without ECG-synchronization and reconstructed using sharp and soft kernels. Coronary calcifications were annotated employing the clinically used intensity value thresholding (130 HU). Thereafter, a threshold separating each calcification from its background was determined using an Expectation-Maximization algorithm. Finally, for each lesion the partial content of calcification in each voxel was determined depending on its intensity and the determined threshold.
Results: Clinical calcium scoring resulted in overestimation of calcium volume for medium and high density calcifications in the first phantom, and overestimation of calcium volume for high density and underestimation for low density calcifications in the second phantom. With induced motion these effects were further emphasized. The proposed quantification resulted in better accuracy and substantially lower over- and underestimation of calcium volume even in presence of motion. In chest CT, the agreement between calcium scores from the two reconstructions improved when proposed method was used.
Conclusion: Compared with clinical calcium scoring, proposed quantification provides a better estimate of the true calcium volume in phantoms and better agreement in calcium scores between different subject scan reconstructions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301689 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209318 | PLOS |