98%
921
2 minutes
20
Triple negative breast cancer (TNBC) patients have high risk of recurrence and metastasis, and current treatment options remain limited. Cancer stem-like cells (CSCs) have been linked to cancer initiation, progression and chemotherapy resistance. Notch signaling is a key pathway regulating TNBC CSC survival. Treatment of TNBC with PI3K or mTORC1/2 inhibitors results in drug-resistant, Notch-dependent CSC. However, downstream mechanisms and potentially druggable Notch effectors in TNBC CSCs are largely unknown. We studied the role of the AKT pathway and mitochondrial metabolism downstream of Notch signaling in TNBC CSC from cell lines representative of different TNBC molecular subtypes as well as a novel patient-derived model. We demonstrate that exposure of TNBC cells to recombinant Notch ligand Jagged1 leads to rapid AKT phosphorylation in a Notch1-dependent but RBP-Jκ independent fashion. This requires mTOR and IKKα. Jagged1 also stimulates mitochondrial respiration and fermentation in an AKT- and IKK-dependent fashion. Notch1 co-localizes with mitochondria in TNBC cells. Pharmacological inhibition of Notch cleavage by gamma secretase inhibitor PF-03084014 in combination with AKT inhibitor MK-2206 or IKK-targeted NF-κB inhibitor Bay11-7082 blocks secondary mammosphere formation from sorted CD90 or CD44CD24 (CSCs) cells. A TNBC patient-derived model gave comparable results. Besides mitochondrial oxidative metabolism, Jagged1 also triggers nuclear, NF-κB-dependent transcription of anti-apoptotic gene cIAP-2. This requires recruitment of Notch1, IKKα and NF-κB to the cIAP-2 promoter. Our observations support a model where Jagged1 triggers IKKα-dependent, mitochondrial and nuclear Notch1 signals that stimulate AKT phosphorylation, oxidative metabolism and transcription of survival genes in PTEN wild-type TNBC cells. These data suggest that combination treatments targeting the intersection of the Notch, AKT and NF-κB pathways have potential therapeutic applications against CSCs in TNBC cases with Notch1 and wild-type PTEN expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289043 | PMC |
http://dx.doi.org/10.3389/fonc.2018.00575 | DOI Listing |
Biomed Pharmacother
September 2025
Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Electronic address:
Patients with epithelial ovarian cancer (EOC) face high mortality due to late diagnosis, recurrence, metastasis, and drug resistance. The NOTCH signaling pathway plays a critical role in cancer progression. This study analyzed NOTCH pathway deregulation in EOC patients and its response to taxane treatment in vitro and in vivo.
View Article and Find Full Text PDFNeuroendocrinology
September 2025
Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.
View Article and Find Full Text PDFMediators Inflamm
September 2025
College of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan 250002, China.
Uveitis is an inflammatory eye disease, and Longdan Xiegan Decoction (LXD) has been used to treat uveitis. However, the underlying mechanisms have not fully been addressed. The present study aimed to provide new insights into LXD ameliorating inflammatory response of experimental autoimmune uveitis (EAU) and regulating T helper (Th) cell differentiation via the interaction between microRNA (miRNA) and mRNA.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
September 2025
Department of Physiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea.
Diabetes mellitus is a major global health concern associated with micro-and macrovascular complications. Among the diverse mechanisms that contribute to vascular dysfunction in diabetes, endothelial to mesenchymal transition (EndMT) has emerged as a key pathological process. EndMT involves the loss of endothelial cell characteristics and the acquisition of mesenchymal features, resulting in impaired endothelial function, increased fibrosis, and inflammation.
View Article and Find Full Text PDFMed
August 2025
Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address: p
Background: Pathogenic responses against self and foreign antigens in systemic autoimmunity and infection, respectively, engage similar immunologic components, thus lacking distinguishing diagnostic biomarkers. Herein, we tested whether whole-blood transcriptome analysis discriminates autoimmune from infectious diseases.
Methods: We applied nested cross-validation methodology to tune and validate random forests, k-nearest neighbors, and support vector machines, using a new preprocessing method on 22 publicly available datasets, including 594 patients with a broad spectrum of systemic autoimmune diseases and 615 patients with diverse viral, bacterial, and parasitic infections.