Volitional modulation of higher-order visual cortex alters human perception.

Neuroimage

Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK; UCL Institute of Cognitive Neuroscience, University College London, UK.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Can we change our perception by controlling our brain activation? Awareness during binocular rivalry is shaped by the alternating perception of different stimuli presented separately to each monocular view. We tested the possibility of causally influencing the likelihood of a stimulus entering awareness. To do this, participants were trained with neurofeedback, using realtime functional magnetic resonance imaging (rt-fMRI), to differentially modulate activation in stimulus-selective visual cortex representing each of the monocular images. Neurofeedback training led to altered bistable perception associated with activity changes in the trained regions. The degree to which training influenced perception predicted changes in grey and white matter volumes of these regions. Short-term intensive neurofeedback training therefore sculpted the dynamics of visual awareness, with associated plasticity in the human brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.11.054DOI Listing

Publication Analysis

Top Keywords

visual cortex
8
neurofeedback training
8
perception
5
volitional modulation
4
modulation higher-order
4
higher-order visual
4
cortex alters
4
alters human
4
human perception
4
perception change
4

Similar Publications

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Brain Activity During Electrical Stimulation of Visual-Motor Illusion with Enhanced Joint Motion Intensity.

J Mot Behav

September 2025

Department Department of Physical Therapy, Faculty of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.

Visual-motor illusion (VMI) is a kinesthetic illusion produced by viewing an image showing joint motion. VMI with enhanced joint movement intensity (power-VMI; P-VMI) is expected to activate a wide range of motor association brain regions, and when combined with electrical stimulation that activates the motor sensory cortex, further activation of brain activity can be expected. This study aimed to verify the effectiveness of VMI using functional near-infrared spectroscopy to confirm brain activity during combined P-VMI and electrical stimulation.

View Article and Find Full Text PDF

Severe worry is a transdiagnostic, highly prevalent symptom, difficult to treat and associated with significant morbidity in late life. Understanding the neural correlates of worry induction and reappraisal in older adults is key to developing novel treatments. We recruited 124 older adults ( ≥ 50 years old) with varying worry severity and clinical comorbidity (27% generalized anxiety disorder, 23% depressive disorders).

View Article and Find Full Text PDF

Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.

View Article and Find Full Text PDF

Despite the functional specialization in visual cortex, there is growing evidence that the processing of chromatic and spatial visual features is intertwined. While past studies focused on visual field biases in retina and behavior, large-scale dependencies between coding of color and retinotopic space are largely unexplored in the cortex. Using a sample of male and female volunteers, we asked whether spatial color biases are shared across different human observers, and whether they are idiosyncratic for distinct areas.

View Article and Find Full Text PDF