A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ultra-Low-Dose F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. | LitMetric

Ultra-Low-Dose F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs.

Radiology

From the Departments of Radiology (K.T.C., F.B.d.C.M., S.S., G.Z.), Electrical Engineering (E.G., J.M.P.), and Neurology and Neurological Sciences (A.B., K.L.P., S.J.S., M.D.G., E.M.), Stanford University, 1201 Welch Rd, Stanford, CA 94305; Department of Engineering Physics, Tsinghua University, Bei

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose To reduce radiotracer requirements for amyloid PET/MRI without sacrificing diagnostic quality by using deep learning methods. Materials and Methods Forty data sets from 39 patients (mean age ± standard deviation [SD], 67 years ± 8), including 16 male patients and 23 female patients (mean age, 66 years ± 6 and 68 years ± 9, respectively), who underwent simultaneous amyloid (fluorine 18 [F]-florbetaben) PET/MRI examinations were acquired from March 2016 through October 2017 and retrospectively analyzed. One hundredth of the raw list-mode PET data were randomly chosen to simulate a low-dose (1%) acquisition. Convolutional neural networks were implemented with low-dose PET and multiple MR images (PET-plus-MR model) or with low-dose PET alone (PET-only) as inputs to predict full-dose PET images. Quality of the synthesized images was evaluated while Bland-Altman plots assessed the agreement of regional standard uptake value ratios (SUVRs) between image types. Two readers scored image quality on a five-point scale (5 = excellent) and determined amyloid status (positive or negative). Statistical analyses were carried out to assess the difference of image quality metrics and reader agreement and to determine confidence intervals (CIs) for reading results. Results The synthesized images (especially from the PET-plus-MR model) showed marked improvement on all quality metrics compared with the low-dose image. All PET-plus-MR images scored 3 or higher, with proportions of images rated greater than 3 similar to those for the full-dose images (-10% difference [eight of 80 readings], 95% CI: -15%, -5%). Accuracy for amyloid status was high (71 of 80 readings [89%]) and similar to intrareader reproducibility of full-dose images (73 of 80 [91%]). The PET-plus-MR model also had the smallest mean and variance for SUVR difference to full-dose images. Conclusion Simultaneously acquired MRI and ultra-low-dose PET data can be used to synthesize full-dose-like amyloid PET images. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Catana in this issue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394782PMC
http://dx.doi.org/10.1148/radiol.2018180940DOI Listing

Publication Analysis

Top Keywords

pet-plus-mr model
12
full-dose images
12
images
10
amyloid pet
8
deep learning
8
patients age
8
pet data
8
low-dose pet
8
images pet-plus-mr
8
pet images
8

Similar Publications