Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The benefits of nanosize active particles in Li-ion batteries are currently ambiguous. They are acclaimed for enhancing the cyclability of certain electrode materials and for improving rate performance. However, at the same time, nanoparticles are criticized for causing side reactions as well as for their low packing density and, therefore, poor volumetric battery performance. This paper demonstrates for the first time that self-assembly can be used to pack nanoparticles into dense battery electrodes with up to 4-fold higher volumetric capacities. Furthermore, despite the dense packing of the self-assembled electrodes, they retain a higher volumetric capacity than randomly dispersed nanoparticles up to rates of 5 C. Finally, we did not observe substential degradation in capacity after 1000 cycles, and post-mortem analysis indicates that the self-assembled structures are maintained during cycling. Therefore, the proposed self-assembled electrodes profit from the advantages of nanostructured battery materials without compromising the volumetric performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b03741 | DOI Listing |