A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Statistical Model of Expansive Growth in Plant and Fungal Cells: The Case of Phycomyces. | LitMetric

A Statistical Model of Expansive Growth in Plant and Fungal Cells: The Case of Phycomyces.

Biophys J

Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado; Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado. Electronic address:

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Expansive growth is a process by which walled cells of plants, algae, and fungi use turgor pressure to mediate irreversible wall deformation and regulate their shape and volume. The molecular structure of the primary cell wall must therefore perform multiple functions simultaneously, including providing structural support by combining elastic and irreversible deformation and facilitating the deposition of new material during growth. This is accomplished by a network of microfibrils and tethers composed of complex polysaccharides and proteins that can dynamically mediate the network topology via periodic detachment and reattachment events. Lockhart and Ortega have provided crucial macroscopic understanding of the expansive growth process through global biophysical models, but these models lack the connection to molecular processes that trigger network rearrangements in the wall. Interestingly, the helical growth of the fungal sporangiophores of Phycomyces blakesleeanus is attributed to a limited region (called the growth zone) where microfibrils are deposited, followed by reorientation and slip. Based on past evidence of dominant shear strain between microfibrils (slippage), we propose a mechanistic model of a network of sliding fibrils connected by tethers. A statistical approach is introduced to describe the population behavior of tethers that have elastic properties and the ability to break and reform in time. These properties are responsible for global cell wall mechanics such as creep and stress relaxation. Model predictions are compared with experiments from literature on stress relaxation and turgor pressure step up for the growing cells of P. blakesleeanus, which are later extended to incised pea (Pisum sativus L.) and the algae Chara corallina using the unique dimensionless number Π for each species. To our knowledge, this research is the first attempt to use a statistical approach to model the cell wall during expansive growth, and we believe it provides critical insights on cell wall dynamics at a molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302256PMC
http://dx.doi.org/10.1016/j.bpj.2018.11.014DOI Listing

Publication Analysis

Top Keywords

expansive growth
16
cell wall
16
growth process
8
turgor pressure
8
statistical approach
8
stress relaxation
8
growth
7
wall
6
statistical model
4
expansive
4

Similar Publications