A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Differential expression of 3β-HSD and mlncRNAs in response to abiotic stresses in Digitalis nervosa. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digitalis nervosa is an important medicinal plant species belonging to the family of Scrophulariaceae that has the potential to be used for heart failure. 3β-hydroxysteroid dehydrogenase (3β-HSD) is a key gene in the biosynthesis of cardenolides for making digitalis effective compounds, hence identification of this gene is important for genetic engineering purposes towards increasing the yield of cardiac glycosides. In addition, mRNA-like non-coding RNAs (mlncRNAs), a class of long non coding RNAs, play key roles in various biological processes and may affect cardenolides pathway in digitalis plants.  In the present work, full sequence of 3β-HSD was isolated from Digitalis nervosa. Gene expression patterns of 3β-HSD along with three mlncRNAs including mlncRNA23, mlncRNA28 and mlncRNA30 were studied and the results indicated that they are differentially expressed in different tissues including roots, stems and leaves, with the highest expression levels in leaves.  Moreover, the transcript levels of these genes affected by the cold and drought stresses. The results obtained from the present study is important in order to understand the potential role of mlncRNAs in digitalis plants, especially in response to abiotic stresses.

Download full-text PDF

Source

Publication Analysis

Top Keywords

digitalis nervosa
12
response abiotic
8
abiotic stresses
8
digitalis
6
differential expression
4
3β-hsd
4
expression 3β-hsd
4
mlncrnas
4
3β-hsd mlncrnas
4
mlncrnas response
4

Similar Publications