Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A lateral shearing interferometric technique combined with an 11.6 μm polydimethylsiloxane (PDMS) transparent thin film is proposed and demonstrated for optical detection of ultrasound. We experimentally report the device change of reflectivity with pressure of 5.1×10 Pa, 9.5 times more sensitive than the critical-angle-based sensor, 31 times more sensitive than the surface-plasmon-based sensor, and comparable to the Fabry-Perot sensor. The objective-lens-based angle scanning characterization setup inspired from a laser scanning system allows direct comparison between the PDMS sensor and critical-angle-based sensor by adjusting the incident angle with a scanning mirror, thereby eliminating optical and electronics system dependence. The sensing element is easily fabricated through spin coating and the detection element incorporated into an existing optical system with minimum modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.005797 | DOI Listing |