Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Multilayered objects are the most important and interesting structures in nature, exhibiting multiple functionalities. Inspired by the excellent structural-functional characteristics of nature creatures, concentric-cylindrical multilayered scaffolds were prepared by a combination of melt extrusion and leaching, in which well-defined alternating microlayer/gap is assembled. Furthermore, the macroscopic shape, internal structure, and surface topography of such a multilayered scaffold can be elaborately prepared by a simple physical process. The whole process has low cost, is efficient, and is environmentally friendly. Furthermore, such multilayered scaffolds show some interesting applications, e.g., lipophilic/hydrophilic drugs delivery and cell self-seeding. Considering the facile preparation process and versatile applications, this study will open up a new pathway to fabricate scaffolds with controllable architectures and expand their biodegradable polymer applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b18095 | DOI Listing |