A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of Particle Size and Polymer Loading on Dissolution Behavior of Amorphous Griseofulvin Powder. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of particle size on the dissolution behavior of the particles of amorphous solid dispersions (ASDs) of griseofulvin (GF), with 0%-50% Kollidon VA 64 as a crystallization inhibitor is investigated. Both the final dissolved GF concentration and the dissolution rate of GF ASDs were found to be inversely proportional to the particle size. The solution concentrations for the smallest (45-75 μm) size group with different polymer loadings were significantly higher than those for the largest (250-355 μm) group regardless of the initial GF amount. Specifically, the dissolution rate of GF ASDs with 50% polymer loading for the finest group was 2.7 times higher than for the largest group under supersaturating conditions. The rates of dissolution and recrystallization were assessed through surface concentration (C) and Avrami recrystallization rate kinetics, where the solid-state recrystallization was confirmed using Raman spectroscopy. Outcomes indicated that particle size reduction enhanced ASD drug loading by reducing the amount of polymer necessary as finest size ASDs initially dissolve faster, negating their higher recrystallization rate. Kollidon® VA 64 at 30% loading was sufficient to inhibit the GF recrystallization. Overall, the combination of particle size reduction and recrystallization inhibition is effective for improved dissolution behavior of GF ASDs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.11.025DOI Listing

Publication Analysis

Top Keywords

particle size
20
dissolution behavior
12
polymer loading
8
dissolution rate
8
rate asds
8
higher largest
8
recrystallization rate
8
size reduction
8
dissolution
6
size
6

Similar Publications