98%
921
2 minutes
20
Some epigenetic modifications are inherited from one generation to the next, providing a potential mechanism for the inheritance of environmentally acquired traits. Transgenerational inheritance of RNAi phenotypes in Caenorhabditis elegans provides an excellent model to study this phenomenon, and although studies have implicated both chromatin modifications and small RNA pathways in heritable silencing, their relative contributions remain unclear. Here, we demonstrate that the putative histone methyltransferases SET-25 and SET-32 are required for establishment of a transgenerational silencing signal but not for long-term maintenance of this signal between subsequent generations, suggesting that transgenerational epigenetic inheritance is a multi-step process with distinct genetic requirements for establishment and maintenance of heritable silencing. Furthermore, small RNA sequencing reveals that the abundance of secondary siRNAs (thought to be the effector molecules of heritable silencing) does not correlate with silencing phenotypes. Together, our results suggest that the current mechanistic models of epigenetic inheritance are incomplete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2018.10.085 | DOI Listing |
Mol Ther Nucleic Acids
September 2025
Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA.
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease. There are currently few effective therapies to treat the disease, although many approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish models, and the HDACi givinostat has recently gained FDA approval for DMD.
View Article and Find Full Text PDFTrends Plant Sci
September 2025
School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, Australia, 4072. Electronic address:
Advances in genome engineering have paved the way for targeted epigenome engineering, providing fundamental insights into the role of epigenetic modifications in trait inheritance. Engineered epialleles have already delivered stable, heritable changes in agronomic traits. Despite this capacity, progress in the field has not yet achieved its potential, leaving many avenues of research unexplored.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
Early-life programming is a major determinant of lifelong metabolic health, yet current preventive strategies focus almost exclusively on maternal factors. Emerging experimental and preclinical data reveal that a father's diet before conception, particularly high-fat intake, also shapes offspring physiology. Here, we synthesize the latest evidence on how such diets remodel the sperm epigenome during two discrete windows of vulnerability: (i) testicular spermatogenesis, via DNA methylation and histone modifications, and (ii) post-testicular epididymal maturation, where small non-coding RNAs are selectively gained.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, Buenos Aires C1113, Argentina.
Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive physiology. In the testis, cocaine alters the endocrine microenvironment, induces cell-specific damage, and disrupts spermatogenesis.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy.
The microbiota refers to the entire community of microorganisms, including bacteria, viruses, fungi, archaea, and protozoa, that inhabit various anatomical sites and exert complex influences on human health and disease [...
View Article and Find Full Text PDF