98%
921
2 minutes
20
Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group-the birds-of-paradise-exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit-the "courtship phenotype." Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness-functional overlap and interdependency-promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245505 | PMC |
http://dx.doi.org/10.1371/journal.pbio.2006962 | DOI Listing |
Genome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFArch Sex Behav
September 2025
Department of Psychology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
The kin selection hypothesis (KSH) proposes that same-sex attracted individuals offset their lowered direct reproduction via kin-directed altruism that increases close genetic relatives' reproduction, thereby enhancing inclusive fitness. Retrospective research found that childhood concerns for kin's well-being are elevated among birth-assigned males who are androphilic (i.e.
View Article and Find Full Text PDFNat Protoc
September 2025
Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDFProc Biol Sci
September 2025
Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Västerbotten County, Sweden.
Pharmaceutical contaminants reaching natural aquatic ecosystems can affect fish behaviour, modifying activity patterns, foraging behaviour and antipredator responses. While laboratory-based studies can offer key insights, assessing the ecological relevance of these findings requires field-based approaches. Therefore, we examined the effects of oxazepam, a widely prescribed anxiolytic drug, on the behaviour of a cyprinid fish (the common roach, ) in the wild, combining slow-release exposure implants with continuous tracking via acoustic telemetry.
View Article and Find Full Text PDF