A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Betalains are plant pigments primarily produced by plants of the order Caryophyllales. Because betalain possesses anti-inflammatory and anticancer activities, it may be useful as a pharmaceutical agent and dietary supplement. Recent studies have identified the genes involved in the betalain biosynthesis of betanin. Amaranthin and celosianin II are abundant in the quinoa (Chenopodium quinoa Willd.) hypocotyl, and amaranthin comprises glucuronic acid bound to betanin; therefore, this suggests the existence of a glucuronyltransferase involved in the synthesis of amaranthin in the quinoa hypocotyl. To identify the gene involved in amaranthin biosynthesis, we performed a BLAST analysis and phylogenetic tree analysis based on sequences homologous to flavonoid glycosyltransferase, followed by expression analysis on the quinoa hypocotyl to obtain three candidate proteins. Production of amaranthin in a transient Nicotiana benthamiana expression system was evaluated for these candidates and one was identified as having the ability to produce amaranthin. The gene encoding this protein was quinoa amaranthin synthetase 1 (CqAmaSy1). We also created a transgenic tobacco bright yellow-2 (BY-2) cell line wherein four betalain biosynthesis genes were introduced to facilitate amaranthin production. This transgenic cell line produced 13.67 ± 4.13 μm (mean ± SEM) amaranthin and 26.60 ± 1.53 μm betanin, whereas the production of isoamaranthin and isobetanin could not be detected. Tests confirmed the ability of amaranthin and betanin to slightly suppress cancer cell viability. Furthermore, amaranthin was shown to significantly inhibit HIV-1 protease activity, whereas betanin did not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6587806PMC
http://dx.doi.org/10.1111/pbi.13032DOI Listing

Publication Analysis

Top Keywords

amaranthin
12
amaranthin synthetase
8
chenopodium quinoa
8
amaranthin production
8
betalain biosynthesis
8
quinoa hypocotyl
8
quinoa
6
betanin
5
isolation amaranthin
4
synthetase chenopodium
4

Similar Publications