98%
921
2 minutes
20
Insect-induced galls usually develop nutritional cells, which they induce and consume directly, and any metabolic modification of those cells may reflect changes of the insect's own metabolism. The system Palaeomystella oligophaga (Lepidoptera)-Macairea radula (Melastomataceae) presents a series of natural enemies, including parasitoids and cecidophages that can function as a natural experiment, respectively removing the specific galling feeding stimulus and providing a nonspecific one. Considering that the process of induction and maintenance of gall tissues strictly depends on the constant specific stimulus of galling, question I:What kind of metabolic changes these different groups of natural enemies can promote in chemical and structural composition of these galls? II: How the specialized tissues are metabolically dependent on the constant specific stimulus of galling in latter stages of gall development? Galls without natural enemies, with parasitoids or cecidophages in larvae or pupae stages were analyzed through histochemistry and cytological profiles and all compared to galls in natural senescence state. The analysis revealed the accumulation of proteins and lipids in typical nutritive tissue and starch in the storage tissue, as well a high integrity of cellular organelles and membrane systems on galls with gallings in the larval stage. Both parasitoids and cecidophages stop galling feeding activities, which resulted in the paralysis of the stimulus that maintain the metabolism of gall tissues, leading to generalized collapse. We demonstrate that the development and metabolic maintenance of a typical nutritive tissue in these galls are completely dependent on constant larval stimulus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-018-1321-2 | DOI Listing |
Arch Insect Biochem Physiol
September 2025
Department of Plant Medicals, Andong National University, Andong, Republic of Korea.
The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu
Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, College of Plant Protection, Southwest University, Chongqing 400715, China. Electronic address:
The innovative fungus-mite collaborative control strategy based on the high resistance of predatory mites to entomopathogenic fungi offers significant advantages. However, the resistance mechanisms of predatory mites to entomopathogenic fungi remain poorly characterized. Additionally, the pathogenic and lethal risks of broad-spectrum entomopathogenic fungi to predatory mites pose constraints on their application.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, He
The arms race between insect-resistant secondary metabolites in plants and the detoxification genes of their natural enemies reveals the intricate co-evolutionary dynamics between the Asian corn borer (Ostrinia furnacalis) and its host plant, maize, and provides a new perspective for the potential control of pests. In this study, ELISA and transcriptome revealed that the glutathione S-transferases were involved in the detoxification of O. furnacalis to maize secondary metabolite 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA).
View Article and Find Full Text PDFAcynonapyr is a novel acaricide developed by Nippon Soda Co., Ltd. It contains a unique azabicyclic ring and oxyamine structure and represents the first agricultural chemical that targets calcium-activated potassium channels, classified as Group 33 in the IRAC Mode of Action Classification.
View Article and Find Full Text PDF