A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Undersampling and Bagging of Decision Trees in the Analysis of Cardiorespiratory Behavior for the Prediction of Extubation Readiness in Extremely Preterm Infants. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extremely preterm infants often require endotracheal intubation and mechanical ventilation during the first days of life. Due to the detrimental effects of prolonged invasive mechanical ventilation (IMV), clinicians aim to extubate infants as soon as they deem them ready.Unfortunately, existing strategies for prediction of extubation readiness vary across clinicians and institutions, and lead to high reintubation rates. We present an approach using Random Forest classifiers for the analysis of cardiorespiratory variability to predict extubation readiness. We address the issue of data imbalance by employing random undersampling of examples from the majority class before training each Decision Tree in a bag. By incorporating clinical domain knowledge, we further demonstrate that our classifier could have identified 71% of infants who failed extubation, while maintaining a success detection rate of 78%.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2018.8513194DOI Listing

Publication Analysis

Top Keywords

extubation readiness
12
analysis cardiorespiratory
8
prediction extubation
8
extremely preterm
8
preterm infants
8
mechanical ventilation
8
undersampling bagging
4
bagging decision
4
decision trees
4
trees analysis
4

Similar Publications