A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Recessive Host Range Mutants and Unsusceptible Cells That Inactivate Virions without Genome Penetration: Ecological and Technical Implications. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although microviruses do not possess a visible tail structure, one vertex rearranges after interacting with host lipopolysaccharides. Most examinations of host range, eclipse, and penetration were conducted before this "host-induced" unique vertex was discovered and before DNA sequencing became routine. Consequently, structure-function relationships dictating host range remain undefined. Biochemical and genetic analyses were conducted with two closely related microviruses, α3 and ST-1. Despite ∼90% amino acid identity, the natural host of α3 is C, whereas ST-1 is a K-12-specific phage. Virions attached and eclipsed to both native and unsusceptible hosts; however, they breached only the native host's cell wall. This suggests that unsusceptible host-phage interactions promote off-pathway reactions that can inactivate viruses without penetration. This phenomenon may have broader ecological implications. To determine which structural proteins conferred host range specificity, chimeric virions were generated by individually interchanging the coat, spike, or DNA pilot proteins. Interchanging the coat protein switched host range. However, host range expansion could be conferred by single point mutations in the coat protein. The expansion phenotype was recessive: genetically mutant progeny from coinfected cells did not display the phenotype. Thus, mutant isolation required populations generated in environments with low multiplicities of infection (MOI), a phenomenon that may have impacted past host range studies in both prokaryotic and eukaryotic systems. The resulting genetic and structural data were consistent enough that host range expansion could be predicted, broadening the classical definition of antireceptors to include interfaces between protein complexes within the capsid. To expand host range, viruses must interact with unsusceptible host cell surfaces, which could be detrimental. As observed in this study, virions were inactivated without genome penetration. This may be advantageous to potential new hosts, culling the viral population from which an expanded host range mutant could emerge. When identified, altered host range mutations were recessive. Accordingly, isolation required populations generated in low-MOI environments. However, in laboratory settings, viral propagation includes high-MOI conditions. Typically, infected cultures incubate until all cells produce progeny. Thus, coinfections dominate later replication cycles, masking recessive host range expansion phenotypes. This may have impacted similar studies with other viruses. Last, structural and genetic data could be used to predict site-directed mutant phenotypes, which may broaden the classic antireceptor definition to include interfaces between capsid complexes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340031PMC
http://dx.doi.org/10.1128/JVI.01767-18DOI Listing

Publication Analysis

Top Keywords

host range
48
host
14
range
12
range expansion
12
recessive host
8
genome penetration
8
α3 st-1
8
interchanging coat
8
coat protein
8
isolation required
8

Similar Publications