Performance comparison of hematite (α-FeO)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration.

Water Res

Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, 52242, USA; Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, 52242, USA. Electronic address:

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Point-of-use water treatment technologies can help mitigate risks from drinking water contamination, particularly for metals (and metalloids) that originate in distribution systems (e.g., chromium, lead, copper) or are naturally occurring in private groundwater wells (e.g., arsenic). Here, composite nanofibers of polyacrylonitrile (PAN) with embedded hematite (α-FeO) nanoparticles were synthesized via a single-pot electrospinning synthesis. A core-shell nanofiber composite was also prepared through the subsequent hydrothermal growth of α-FeO nanostructures on embedded hematite composites. Properties of embedded hematite composites were controlled using electrospinning synthesis variables (e.g., size and loading of embedded α-FeO nanoparticles), whereas core-shell composites were also tailored via hydrothermal treatment conditions (e.g., soluble iron concentration and duration). Although uptake of Cu(II), Pb(II), Cr(VI), and As(V) was largely independent of the core-shell variables explored, metal uptake on embedded nanofibers increased with α-FeO loading. Both materials exhibited maximum surface-area-normalized sorption capacities that were comparable to α-FeO nanoparticle dispersions and exceeded that of a commercial iron oxide based sorbent. Further, both types of composite exhibited strong performance across a range of environmentally relevant pH values (6.0-8.0). Notably, core-shell structures, with a majority of surface accessible α-FeO, performed far better than embedded composites in kinetically limited flow through systems than was anticipated from their relative performance in equilibrium batch systems. Core-shell nanofiber filters also retained much of the durability and flexibility exhibited by embedded nanofibers. Additional tests with authentic groundwater samples demonstrated the ability of the core-shell nanofiber filters to remove simultaneously both As and suspended solids, illustrating their promise as a nano-enabled technology for point-of-use water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2018.10.048DOI Listing

Publication Analysis

Top Keywords

embedded hematite
12
core-shell nanofiber
12
point-of-use water
8
water treatment
8
α-feo nanoparticles
8
electrospinning synthesis
8
hematite composites
8
embedded nanofibers
8
nanofiber filters
8
core-shell
7

Similar Publications

Hematite-embedded mesoporous nanoparticles for ferroptosis-inducing cancer sonoimmunotherapy.

J Control Release

September 2025

School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic

Sonodynamic therapy (SDT) aims to treat cancers by generating reactive oxygen species in response to ultrasound (US). However, the clinical applications of SDT are often constrained due to its limited efficacy in triggering systemic immune responses. Considering this, we developed hematite-embedded PEGylated mesoporous silica nanoparticles (H@PMSNs) as potential sonosensitizers for inducing immunogenic cancer cell death.

View Article and Find Full Text PDF
Article Synopsis
  • Multifunctional nanoparticles derived from plants and mushrooms show potential for improved therapy and diagnostics in biomedicine.
  • The combination of silver and natural phytochemicals has been found to enhance antimicrobial and anticancer effects, particularly in conjunction with photodynamic therapy.
  • Gel formulations of these nanoparticles demonstrate greater effectiveness against cancer cells and adapt to tissue structures, indicating promising applications for targeted cancer treatment and tissue regeneration after surgeries.
View Article and Find Full Text PDF

Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.

View Article and Find Full Text PDF

Probing the Nanostructure and Reactivity of Epoxy-Amine Interphases.

ACS Appl Mater Interfaces

December 2024

Corrosion@Manchester, Department of Materials, The University of Manchester, Nancy Rothwell Building, Oxford Road, Manchester M13 9PL, U.K.

Article Synopsis
  • Understanding the interphase regions in epoxy resins is crucial for enhancing their mechanical properties, like fracture strength and barrier performance, as these areas are often weak spots.
  • Conventional methods struggle to analyze these nanoscale regions, making it hard to understand their formation processes.
  • By using molecular dynamics simulations and infrared mapping, researchers discovered that binding interactions of the amine cross-linker with various metal oxide surfaces affect binding energies, while also revealing that an excess of reactive materials remains near the particles, indicating potential undercuring in the matrix.
View Article and Find Full Text PDF
Article Synopsis
  • Far infrared radiation (FIR) between 4-14 μm can benefit human health by improving blood flow, leading to the development of health-promoting textiles using FIR-emitting additives in polymer fabrics.
  • The study focused on biochar from candlenuts combined with activated carbon in polypropylene films, finding that its inclusion increased FIR emissivity and enhanced UV/NIR blocking capabilities.
  • Biochar significantly improved temperature retention and tensile strength of the fibers, suggesting its potential for use in warming clothing and longer-lasting materials compared to other common additives.
View Article and Find Full Text PDF