Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper is the first of a three-part series that investigates the architecture of cancellous ('spongy') bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215452PMC
http://dx.doi.org/10.7717/peerj.5778DOI Listing

Publication Analysis

Top Keywords

cancellous bone
32
architectural patterns
16
hindlimb bones
12
locomotor biomechanics
12
cancellous
9
bone
9
bone architecture
8
architecture cancellous
8
bone main
8
main hindlimb
8

Similar Publications

Functional reconstruction of large mandibular defects, especially in young patients, presents a significant clinical challenge. The ideal approach should not only restore skeletal contour but also address nerve deficits and facilitate final occlusal rehabilitation, all while minimizing morbidity. This report describes a comprehensive, multi-staged strategy for such a case.

View Article and Find Full Text PDF

Giant cell tumor (GCT) of the bone, although benign, demonstrates local aggressiveness, a potential for recurrence, and, in rare instances, malignant transformation. Functional preservation is crucial in cases involving the articular surface, often utilizing the Sandwich Technique. We propose an enhanced reconstruction method using the inner table of the iliac crest in a reverse fashion, offering a more anatomically contoured proximal tibial plateau and reducing donor site morbidity compared to tricortical iliac crest grafting.

View Article and Find Full Text PDF

Cage subsidence is a common complication following transforaminal lumbar interbody fusion (TLIF) that can lead to poor clinical outcomes, including recurrent pain and segmental instability. Conventional TLIF cage designs often fail to distribute stress evenly, increasing the risk of endplate damage and subsequent subsidence. This study aims to evaluate the effect of a modified TLIF cage with upper and lower open windows (lattice structure) in reducing cage subsidence in patients with lumbar degenerative disc disease (LDDD).

View Article and Find Full Text PDF

Ichthyosaurs were the first fully marine tetrapods, and evolved a streamlined body, flippers, live birth, and endothermy-like physiology. However, the transition to these adaptations and how it relates to divergence into ocean environments is ambiguous. Here, we use vertebral bone microstructure to document the first ontogenetic series of two Early Triassic taxa that include the oldest ichthyosaur foetal fossils.

View Article and Find Full Text PDF

Cuboid fractures are relatively rare injuries to the midfoot that commonly occur simultaneously with additional fractures and disruptions to different articular surfaces. Due to the cuboid's large articular surface and contribution to the maintenance of lateral column stability, treatment of cuboid fractures can be difficult and manifest with a variety of post-operative complications. Although simple cuboid fractures can be managed conservatively, at this time, there is no standard operative approach for displaced cuboid fractures.

View Article and Find Full Text PDF